Spaces:
Sleeping
Sleeping
File size: 9,758 Bytes
e476c2e a7ba67c 418028a fe1fad9 e476c2e 5633122 e476c2e 5633122 e476c2e fe1fad9 5633122 418028a cd58cfd dc99168 037c4ae 418028a cd58cfd e476c2e 037c4ae 5633122 e476c2e 037c4ae 5633122 e476c2e 037c4ae 5633122 e476c2e 004fb60 418028a e476c2e 5633122 e476c2e 5633122 bdbf77c e476c2e bdbf77c e476c2e bdbf77c 004fb60 418028a e476c2e 037c4ae 004fb60 418028a 5633122 5011c91 5633122 5011c91 5633122 5011c91 5633122 5011c91 418028a e476c2e 418028a e476c2e 135171d e476c2e cd58cfd 5633122 e476c2e 5633122 e476c2e cd58cfd 5633122 e476c2e cd58cfd e476c2e 037c4ae e476c2e 004fb60 5633122 cd58cfd e476c2e 5633122 418028a 5633122 418028a 5633122 418028a e476c2e fe1fad9 5633122 bdbf77c 135171d bdbf77c 5633122 bdbf77c 5633122 5011c91 5633122 e476c2e 418028a e476c2e 5633122 e476c2e 5633122 e476c2e 5633122 5011c91 1a046be 5633122 fe1fad9 5633122 418028a 5633122 e476c2e 5633122 e476c2e cd58cfd e476c2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import streamlit as st
import PyPDF2
import pandas as pd
import torch
import os
import re
import base64 # For CSV download
try:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from huggingface_hub import login
TRANSFORMERS_AVAILABLE = True
except ImportError as e:
st.error(f"Failed to import transformers: {str(e)}. Please install it with `pip install transformers`.")
TRANSFORMERS_AVAILABLE = False
# Set page configuration
st.set_page_config(page_title="WizNerd Insp", page_icon="π", layout="centered")
# Custom CSS for Tw Cen MT font
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Tw+Cen+MT&display=swap');
html, body, [class*="css"] {
font-family: 'Tw Cen MT', sans-serif !important;
}
.stTable table {
font-family: 'Tw Cen MT', sans-serif !important;
}
</style>
""", unsafe_allow_html=True)
# Load Hugging Face token
HF_TOKEN = os.getenv("HF_TOKEN")
# Model name
MODEL_NAME = "amiguel/class_insp_program"#"amiguel/instruct_BERT-base-uncased_model"
# Label mapping
LABEL_TO_CLASS = {
0: "Campaign", 1: "Corrosion Monitoring", 2: "Flare Tip", 3: "Flare TIP",
4: "FU Items", 5: "Intelligent Pigging", 6: "Lifting", 7: "Non Structural Tank",
8: "Piping", 9: "Pressure Safety Device", 10: "Pressure Vessel (VIE)",
11: "Pressure Vessel (VII)", 12: "Structure", 13: "Flame Arrestor"
}
# Title
st.title("π WizNerd Insp π")
# Avatars
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
# Sidebar
with st.sidebar:
st.header("Upload Documents π")
uploaded_file = st.file_uploader(
"Choose a PDF, XLSX, or CSV file",
type=["pdf", "xlsx", "csv"],
label_visibility="collapsed"
)
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "file_processed" not in st.session_state:
st.session_state.file_processed = False
if "file_data" not in st.session_state:
st.session_state.file_data = None
if "last_uploaded_file" not in st.session_state:
st.session_state.last_uploaded_file = None
# File processing function with cache
@st.cache_data
def process_file(uploaded_file, _cache_key):
if uploaded_file is None:
return None
try:
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text = "\n".join([page.extract_text() for page in pdf_reader.pages])
text = re.sub(r'\s+', ' ', text.lower().strip())
return {"type": "text", "content": text}
elif uploaded_file.type in ["application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "text/csv"]:
df = pd.read_excel(uploaded_file) if uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" else pd.read_csv(uploaded_file)
required_cols = ["Scope", "Functional Location", "Unit name"] # Unit name now required
# Check if all required columns are present
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
st.error(f"Missing required columns: {', '.join(missing_cols)}. Please upload a file with 'Scope', 'Functional Location', and 'Unit name'.")
return None
# Pre-process and concatenate Scope, Functional Location, and Unit name
df = df.dropna(subset=required_cols)
df["input_text"] = df[required_cols].apply(
lambda row: " ".join([re.sub(r'\s+', ' ', str(val).lower().strip()) for val in row]), axis=1
)
return {"type": "table", "content": df[["input_text"] + required_cols]}
except Exception as e:
st.error(f"π Error processing file: {str(e)}")
return None
# Model loading function
@st.cache_resource
def load_model(hf_token):
if not TRANSFORMERS_AVAILABLE:
return None
try:
if not hf_token:
st.error("π Please set the HF_TOKEN environment variable.")
return None
login(token=hf_token)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=len(LABEL_TO_CLASS), token=hf_token)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
return model, tokenizer
except Exception as e:
st.error(f"π€ Model loading failed: {str(e)}")
return None
# Classification function
def classify_instruction(prompt, context, model, tokenizer):
model.eval()
device = model.device
if isinstance(context, pd.DataFrame):
predictions = []
for text in context["input_text"]:
full_prompt = f"Context:\n{text}\n\nInstruction: {prompt}"
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True, max_length=128)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
prediction = outputs.logits.argmax().item()
predictions.append(LABEL_TO_CLASS[prediction])
return predictions
else:
full_prompt = f"Context:\n{context}\n\nInstruction: {prompt}"
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True, max_length=128)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
prediction = outputs.logits.argmax().item()
return LABEL_TO_CLASS[prediction]
# CSV download function
def get_csv_download_link(df, filename="predicted_classes.csv"):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # Encode to base64
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}">Download CSV</a>'
return href
# Load model
if "model" not in st.session_state:
model_data = load_model(HF_TOKEN)
if model_data is None and TRANSFORMERS_AVAILABLE:
st.error("Failed to load model. Check HF_TOKEN.")
st.stop()
elif TRANSFORMERS_AVAILABLE:
st.session_state.model, st.session_state.tokenizer = model_data
model = st.session_state.get("model")
tokenizer = st.session_state.get("tokenizer")
# Check for new file upload and clear cache
if uploaded_file and uploaded_file != st.session_state.last_uploaded_file:
st.cache_data.clear() # Clear all cached data
st.session_state.file_processed = False
st.session_state.file_data = None
st.session_state.last_uploaded_file = uploaded_file
# Process uploaded file once
if uploaded_file and not st.session_state.file_processed:
cache_key = f"{uploaded_file.name}_{uploaded_file.size}"
file_data = process_file(uploaded_file, cache_key)
if file_data:
st.session_state.file_data = file_data
st.session_state.file_processed = True
if file_data["type"] == "table":
st.write("File uploaded with Scope, Functional Location, and Unit name data. Please provide an instruction.")
else:
st.write("File uploaded as text context. Please provide an instruction.")
# Display chat messages
for message in st.session_state.messages:
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
# Chat input handling
if prompt := st.chat_input("Ask your inspection question..."):
if not TRANSFORMERS_AVAILABLE:
st.error("Transformers library not available.")
st.stop()
# Add user message
with st.chat_message("user", avatar=USER_AVATAR):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Handle response
if model and tokenizer:
try:
with st.chat_message("assistant", avatar=BOT_AVATAR):
if st.session_state.file_data:
file_data = st.session_state.file_data
if file_data["type"] == "table":
predictions = classify_instruction(prompt, file_data["content"], model, tokenizer)
result_df = file_data["content"][["Scope", "Functional Location", "Unit name"]].copy()
result_df["Item Class"] = predictions
st.write("Predicted Item Classes:")
st.table(result_df)
st.markdown(get_csv_download_link(result_df), unsafe_allow_html=True)
response = "Predictions completed for uploaded file."
else:
predicted_class = classify_instruction(prompt, file_data["content"], model, tokenizer)
response = f"The Item Class is: {predicted_class}"
else:
# Handle single prompt without file
predicted_class = classify_instruction(prompt, "", model, tokenizer)
response = f"The Item Class is: {predicted_class}"
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
except Exception as e:
st.error(f"β‘ Classification error: {str(e)}")
else:
st.error("π€ Model not loaded!") |