classfinetune / app.py
amiguel's picture
Update app.py
1a046be verified
import streamlit as st
import PyPDF2
import pandas as pd
import torch
import os
import re
import base64 # For CSV download
try:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from huggingface_hub import login
TRANSFORMERS_AVAILABLE = True
except ImportError as e:
st.error(f"Failed to import transformers: {str(e)}. Please install it with `pip install transformers`.")
TRANSFORMERS_AVAILABLE = False
# Set page configuration
st.set_page_config(page_title="WizNerd Insp", page_icon="πŸš€", layout="centered")
# Custom CSS for Tw Cen MT font
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Tw+Cen+MT&display=swap');
html, body, [class*="css"] {
font-family: 'Tw Cen MT', sans-serif !important;
}
.stTable table {
font-family: 'Tw Cen MT', sans-serif !important;
}
</style>
""", unsafe_allow_html=True)
# Load Hugging Face token
HF_TOKEN = os.getenv("HF_TOKEN")
# Model name
MODEL_NAME = "amiguel/class_insp_program"#"amiguel/instruct_BERT-base-uncased_model"
# Label mapping
LABEL_TO_CLASS = {
0: "Campaign", 1: "Corrosion Monitoring", 2: "Flare Tip", 3: "Flare TIP",
4: "FU Items", 5: "Intelligent Pigging", 6: "Lifting", 7: "Non Structural Tank",
8: "Piping", 9: "Pressure Safety Device", 10: "Pressure Vessel (VIE)",
11: "Pressure Vessel (VII)", 12: "Structure", 13: "Flame Arrestor"
}
# Title
st.title("πŸš€ WizNerd Insp πŸš€")
# Avatars
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
# Sidebar
with st.sidebar:
st.header("Upload Documents πŸ“‚")
uploaded_file = st.file_uploader(
"Choose a PDF, XLSX, or CSV file",
type=["pdf", "xlsx", "csv"],
label_visibility="collapsed"
)
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "file_processed" not in st.session_state:
st.session_state.file_processed = False
if "file_data" not in st.session_state:
st.session_state.file_data = None
if "last_uploaded_file" not in st.session_state:
st.session_state.last_uploaded_file = None
# File processing function with cache
@st.cache_data
def process_file(uploaded_file, _cache_key):
if uploaded_file is None:
return None
try:
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text = "\n".join([page.extract_text() for page in pdf_reader.pages])
text = re.sub(r'\s+', ' ', text.lower().strip())
return {"type": "text", "content": text}
elif uploaded_file.type in ["application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "text/csv"]:
df = pd.read_excel(uploaded_file) if uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" else pd.read_csv(uploaded_file)
required_cols = ["Scope", "Functional Location", "Unit name"] # Unit name now required
# Check if all required columns are present
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
st.error(f"Missing required columns: {', '.join(missing_cols)}. Please upload a file with 'Scope', 'Functional Location', and 'Unit name'.")
return None
# Pre-process and concatenate Scope, Functional Location, and Unit name
df = df.dropna(subset=required_cols)
df["input_text"] = df[required_cols].apply(
lambda row: " ".join([re.sub(r'\s+', ' ', str(val).lower().strip()) for val in row]), axis=1
)
return {"type": "table", "content": df[["input_text"] + required_cols]}
except Exception as e:
st.error(f"πŸ“„ Error processing file: {str(e)}")
return None
# Model loading function
@st.cache_resource
def load_model(hf_token):
if not TRANSFORMERS_AVAILABLE:
return None
try:
if not hf_token:
st.error("πŸ” Please set the HF_TOKEN environment variable.")
return None
login(token=hf_token)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=len(LABEL_TO_CLASS), token=hf_token)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
return model, tokenizer
except Exception as e:
st.error(f"πŸ€– Model loading failed: {str(e)}")
return None
# Classification function
def classify_instruction(prompt, context, model, tokenizer):
model.eval()
device = model.device
if isinstance(context, pd.DataFrame):
predictions = []
for text in context["input_text"]:
full_prompt = f"Context:\n{text}\n\nInstruction: {prompt}"
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True, max_length=128)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
prediction = outputs.logits.argmax().item()
predictions.append(LABEL_TO_CLASS[prediction])
return predictions
else:
full_prompt = f"Context:\n{context}\n\nInstruction: {prompt}"
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True, max_length=128)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
prediction = outputs.logits.argmax().item()
return LABEL_TO_CLASS[prediction]
# CSV download function
def get_csv_download_link(df, filename="predicted_classes.csv"):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # Encode to base64
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}">Download CSV</a>'
return href
# Load model
if "model" not in st.session_state:
model_data = load_model(HF_TOKEN)
if model_data is None and TRANSFORMERS_AVAILABLE:
st.error("Failed to load model. Check HF_TOKEN.")
st.stop()
elif TRANSFORMERS_AVAILABLE:
st.session_state.model, st.session_state.tokenizer = model_data
model = st.session_state.get("model")
tokenizer = st.session_state.get("tokenizer")
# Check for new file upload and clear cache
if uploaded_file and uploaded_file != st.session_state.last_uploaded_file:
st.cache_data.clear() # Clear all cached data
st.session_state.file_processed = False
st.session_state.file_data = None
st.session_state.last_uploaded_file = uploaded_file
# Process uploaded file once
if uploaded_file and not st.session_state.file_processed:
cache_key = f"{uploaded_file.name}_{uploaded_file.size}"
file_data = process_file(uploaded_file, cache_key)
if file_data:
st.session_state.file_data = file_data
st.session_state.file_processed = True
if file_data["type"] == "table":
st.write("File uploaded with Scope, Functional Location, and Unit name data. Please provide an instruction.")
else:
st.write("File uploaded as text context. Please provide an instruction.")
# Display chat messages
for message in st.session_state.messages:
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
# Chat input handling
if prompt := st.chat_input("Ask your inspection question..."):
if not TRANSFORMERS_AVAILABLE:
st.error("Transformers library not available.")
st.stop()
# Add user message
with st.chat_message("user", avatar=USER_AVATAR):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Handle response
if model and tokenizer:
try:
with st.chat_message("assistant", avatar=BOT_AVATAR):
if st.session_state.file_data:
file_data = st.session_state.file_data
if file_data["type"] == "table":
predictions = classify_instruction(prompt, file_data["content"], model, tokenizer)
result_df = file_data["content"][["Scope", "Functional Location", "Unit name"]].copy()
result_df["Item Class"] = predictions
st.write("Predicted Item Classes:")
st.table(result_df)
st.markdown(get_csv_download_link(result_df), unsafe_allow_html=True)
response = "Predictions completed for uploaded file."
else:
predicted_class = classify_instruction(prompt, file_data["content"], model, tokenizer)
response = f"The Item Class is: {predicted_class}"
else:
# Handle single prompt without file
predicted_class = classify_instruction(prompt, "", model, tokenizer)
response = f"The Item Class is: {predicted_class}"
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
except Exception as e:
st.error(f"⚑ Classification error: {str(e)}")
else:
st.error("πŸ€– Model not loaded!")