Spaces:
Sleeping
Sleeping
File size: 7,762 Bytes
36ef005 3c9f4cd 36ef005 55d3e9f 36ef005 f149660 3e88324 36ef005 f149660 36ef005 f149660 36ef005 f149660 36ef005 3c9f4cd d64ef24 3e88324 d64ef24 36ef005 c7c3a66 3e88324 f149660 c7c3a66 3e88324 f149660 36ef005 3c9f4cd 55d3e9f c7c3a66 3e88324 c7c3a66 3c9f4cd c7c3a66 3e88324 3c9f4cd c7c3a66 55d3e9f 3c9f4cd c7c3a66 36ef005 f149660 36ef005 f149660 36ef005 f149660 36ef005 f149660 36ef005 3c9f4cd 36ef005 3c9f4cd 36ef005 c7c3a66 36ef005 c7c3a66 3c9f4cd 36ef005 3c9f4cd 36ef005 f149660 36ef005 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import streamlit as st
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TextStreamer
from huggingface_hub import login
import PyPDF2
import pandas as pd
import torch
import time
# Device setup
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Set page configuration
st.set_page_config(
page_title="Translator Agent",
page_icon="🚀",
layout="centered"
)
# Model name
MODEL_NAME = "Helsinki-NLP/opus-mt-en-fr"
# Title with rocket emojis
st.title("🚀 English to French Translator 🚀")
# Configure Avatars
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
# Sidebar configuration
with st.sidebar:
st.header("Authentication 🔒")
hf_token = st.text_input("Hugging Face Token", type="password",
help="Get your token from https://huggingface.co/settings/tokens")
st.header("Upload Documents 📂")
uploaded_file = st.file_uploader(
"Choose a PDF or XLSX file to translate",
type=["pdf", "xlsx"],
label_visibility="collapsed"
)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# File processing function
@st.cache_data
def process_file(uploaded_file):
if uploaded_file is None:
return ""
try:
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
return "\n".join([page.extract_text() for page in pdf_reader.pages])
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
df = pd.read_excel(uploaded_file)
return df.to_markdown()
except Exception as e:
st.error(f"📄 Error processing file: {str(e)}")
return ""
# Model loading function
@st.cache_resource
def load_model(hf_token):
try:
if not hf_token:
st.error("🔐 Authentication required! Please provide a Hugging Face token.")
return None
login(token=hf_token)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
token=hf_token
)
# Load the model with appropriate dtype for CPU/GPU compatibility
dtype = torch.float16 if DEVICE == "cuda" else torch.float32
model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_NAME,
token=hf_token,
torch_dtype=dtype,
device_map="auto" # Automatically maps to CPU or GPU
)
return model, tokenizer
except Exception as e:
st.error(f"🤖 Model loading failed: {str(e)}")
return None
# Generation function for translation with streaming
def generate_translation(input_text, model, tokenizer):
try:
# Tokenize the input (no prompt needed for seq2seq translation models)
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = inputs.to(DEVICE)
# Set up the streamer for real-time output
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
# Generate translation with streaming
model.eval()
with torch.no_grad():
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=512,
num_beams=5,
length_penalty=1.0,
early_stopping=True,
streamer=streamer,
return_dict_in_generate=True,
output_scores=True
)
# Decode the full output for storage and metrics
translation = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
return translation, streamer
except Exception as e:
raise Exception(f"Generation error: {str(e)}")
# Display chat messages
for message in st.session_state.messages:
try:
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
except:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input handling
if prompt := st.chat_input("Enter text to translate into French..."):
if not hf_token:
st.error("🔑 Authentication required!")
st.stop()
# Load model if not already loaded
if "model" not in st.session_state:
model_data = load_model(hf_token)
if model_data is None:
st.error("Failed to load model. Please check your token and try again.")
st.stop()
st.session_state.model, st.session_state.tokenizer = model_data
model = st.session_state.model
tokenizer = st.session_state.tokenizer
# Add user message
with st.chat_message("user", avatar=USER_AVATAR):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Process file or use prompt directly
file_context = process_file(uploaded_file)
input_text = file_context if file_context else prompt
# Generate translation with streaming
if model and tokenizer:
try:
with st.chat_message("assistant", avatar=BOT_AVATAR):
start_time = time.time()
# Create a placeholder for streaming output
response_container = st.empty()
full_response = ""
# Generate translation and stream output
translation, streamer = generate_translation(input_text, model, tokenizer)
# Streamlit will automatically display the streamed output via the TextStreamer
# Collect the full response for metrics and storage
full_response = translation
# Update the placeholder with the final response
response_container.markdown(full_response)
# Calculate performance metrics
end_time = time.time()
input_tokens = len(tokenizer(input_text)["input_ids"])
output_tokens = len(tokenizer(full_response)["input_ids"])
speed = output_tokens / (end_time - start_time)
# Calculate costs (hypothetical pricing model)
input_cost = (input_tokens / 1000000) * 5 # $5 per million input tokens
output_cost = (output_tokens / 1000000) * 15 # $15 per million output tokens
total_cost_usd = input_cost + output_cost
total_cost_aoa = total_cost_usd * 1160 # Convert to AOA (Angolan Kwanza)
# Display metrics
st.caption(
f"🔑 Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | "
f"🕒 Speed: {speed:.1f}t/s | 💰 Cost (USD): ${total_cost_usd:.4f} | "
f"💵 Cost (AOA): {total_cost_aoa:.4f}"
)
# Store the full response in chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
except Exception as e:
st.error(f"⚡ Translation error: {str(e)}")
else:
st.error("🤖 Model not loaded!") |