Spaces:
Sleeping
Sleeping
File size: 9,931 Bytes
36ef005 9a4c5ac 36ef005 67aeb8b 36ef005 55d3e9f 36ef005 f149660 9a4c5ac 36ef005 f149660 36ef005 f149660 36ef005 9a4c5ac 36ef005 9a4c5ac 36ef005 3c9f4cd d64ef24 3e88324 d64ef24 36ef005 9a4c5ac f149660 9a4c5ac 36ef005 9a4c5ac 36ef005 9a4c5ac c7c3a66 9a4c5ac c7c3a66 36ef005 f149660 36ef005 9a4c5ac f149660 9a4c5ac 36ef005 9a4c5ac 36ef005 9a4c5ac 36ef005 f149660 36ef005 f149660 36ef005 3c9f4cd 36ef005 3c9f4cd 9a4c5ac 36ef005 c7c3a66 36ef005 c7c3a66 3c9f4cd 9a4c5ac 36ef005 3c9f4cd 36ef005 f149660 36ef005 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import streamlit as st
import torch
import pandas as pd
import PyPDF2
import pickle
import os
from transformers import AutoTokenizer
from huggingface_hub import login
import time
from ch09util import subsequent_mask # Ensure ch09util.py is available
# Device setup
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Set page configuration
st.set_page_config(
page_title="Translator Agent",
page_icon="🚀",
layout="centered"
)
# Model name
MODEL_NAME = "amiguel/custom-en2fr-transformer-v1"
# Title with rocket emojis
st.title("🚀 English to French Translator 🚀")
# Configure Avatars
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
# Sidebar configuration
with st.sidebar:
st.header("Authentication 🔒")
hf_token = st.text_input("Hugging Face Token", type="password",
help="Get your token from https://huggingface.co/settings/tokens")
st.header("Upload Documents 📂")
uploaded_file = st.file_uploader(
"Choose a PDF or XLSX file to translate",
type=["pdf", "xlsx"],
label_visibility="collapsed"
)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# File processing function
@st.cache_data
def process_file(uploaded_file):
if uploaded_file is None:
return ""
try:
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
return "\n".join([page.extract_text() for page in pdf_reader.pages])
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
df = pd.read_excel(uploaded_file)
return df.to_markdown()
except Exception as e:
st.error(f"📄 Error processing file: {str(e)}")
return ""
# Custom model loading function
@st.cache_resource
def load_model_and_resources(hf_token):
try:
if not hf_token:
st.error("🔐 Authentication required! Please provide a Hugging Face token.")
return None
login(token=hf_token)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
token=hf_token
)
# Load model
from transformers import PreTrainedModel, PretrainedConfig
class TransformerConfig(PretrainedConfig):
model_type = "custom_transformer"
def __init__(self, src_vocab_size, tgt_vocab_size, d_model=256, d_ff=1024, h=8, N=6, dropout=0.1, **kwargs):
super().__init__(**kwargs)
self.src_vocab_size = src_vocab_size
self.tgt_vocab_size = tgt_vocab_size
self.d_model = d_model
self.d_ff = d_ff
self.h = h
self.N = N
self.dropout = dropout
class CustomTransformer(PreTrainedModel):
config_class = TransformerConfig
def __init__(self, config):
super().__init__(config)
from utils.ch09util import create_model
self.model = create_model(
config.src_vocab_size,
config.tgt_vocab_size,
N=config.N,
d_model=config.d_model,
d_ff=config.d_ff,
h=config.h,
dropout=config.dropout
)
def forward(self, src, tgt, src_mask, tgt_mask, **kwargs):
return self.model(src, tgt, src_mask, tgt_mask)
config = TransformerConfig.from_pretrained(MODEL_NAME, token=hf_token)
model = CustomTransformer.from_pretrained(
MODEL_NAME,
config=config,
token=hf_token
).to(DEVICE)
# Load dictionaries (assumes dict.p was uploaded to the model repo)
dict_path = "dict.p"
if not os.path.exists(dict_path):
st.error("Dictionary file (dict.p) not found. Please ensure it was uploaded to the model repository.")
return None
with open(dict_path, "rb") as fb:
en_word_dict, en_idx_dict, fr_word_dict, fr_idx_dict = pickle.load(fb)
return model, tokenizer, en_word_dict, fr_word_dict, en_idx_dict, fr_idx_dict
except Exception as e:
st.error(f"🤖 Model loading failed: {str(e)}")
return None
# Custom streaming generation function
def custom_streaming_generate(input_text, model, tokenizer, en_word_dict, fr_word_dict, fr_idx_dict):
try:
model.eval()
PAD, UNK = 0, 1
tokenized_en = ["BOS"] + tokenizer.tokenize(input_text) + ["EOS"]
enidx = [en_word_dict.get(i, UNK) for i in tokenized_en]
src = torch.tensor(enidx).long().to(DEVICE).unsqueeze(0)
src_mask = (src != 0).unsqueeze(-2)
memory = model.model.encode(src, src_mask)
start_symbol = fr_word_dict["BOS"]
ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data)
for _ in range(100):
out = model.model.decode(memory, src_mask, ys, subsequent_mask(ys.size(1)).type_as(src.data))
prob = model.model.generator(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.data[0]
sym = fr_idx_dict.get(next_word, "UNK")
if sym != "EOS":
token = sym.replace("</w>", " ")
for x in '''?:;.,'("-!&)%''':
token = token.replace(f" {x}", f"{x}")
yield token
else:
break
ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
# Yield a final empty token to ensure completion
yield ""
except Exception as e:
raise Exception(f"Generation error: {str(e)}")
# Display chat messages
for message in st.session_state.messages:
try:
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
except:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input handling
if prompt := st.chat_input("Enter text to translate into French..."):
if not hf_token:
st.error("🔑 Authentication required!")
st.stop()
# Load model and resources if not already loaded
if "model" not in st.session_state:
model_data = load_model_and_resources(hf_token)
if model_data is None:
st.error("Failed to load model. Please check your token and try again.")
st.stop()
st.session_state.model, st.session_state.tokenizer, \
st.session_state.en_word_dict, st.session_state.fr_word_dict, \
st.session_state.en_idx_dict, st.session_state.fr_idx_dict = model_data
model = st.session_state.model
tokenizer = st.session_state.tokenizer
en_word_dict = st.session_state.en_word_dict
fr_word_dict = st.session_state.fr_word_dict
fr_idx_dict = st.session_state.fr_idx_dict
# Add user message
with st.chat_message("user", avatar=USER_AVATAR):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Process file or use prompt directly
file_context = process_file(uploaded_file)
input_text = file_context if file_context else prompt
# Generate translation with streaming
if model and tokenizer:
try:
with st.chat_message("assistant", avatar=BOT_AVATAR):
start_time = time.time()
# Create a placeholder for streaming output
response_container = st.empty()
full_response = ""
# Stream translation tokens
for token in custom_streaming_generate(
input_text, model, tokenizer, en_word_dict, fr_word_dict, fr_idx_dict
):
if token: # Only append non-empty tokens
full_response += token
response_container.markdown(full_response)
# Calculate performance metrics
end_time = time.time()
input_tokens = len(tokenizer(input_text)["input_ids"])
output_tokens = len(tokenizer(full_response)["input_ids"])
speed = output_tokens / (end_time - start_time) if (end_time - start_time) > 0 else 0
# Calculate costs (hypothetical pricing model)
input_cost = (input_tokens / 1000000) * 5 # $5 per million input tokens
output_cost = (output_tokens / 1000000) * 15 # $15 per million output tokens
total_cost_usd = input_cost + output_cost
total_cost_aoa = total_cost_usd * 1160 # Convert to AOA (Angolan Kwanza)
# Display metrics
st.caption(
f"🔑 Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | "
f"🕒 Speed: {speed:.1f}t/s | 💰 Cost (USD): ${total_cost_usd:.4f} | "
f"💵 Cost (AOA): {total_cost_aoa:.4f}"
)
# Store the full response in chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
except Exception as e:
st.error(f"⚡ Translation error: {str(e)}")
else:
st.error("🤖 Model not loaded!") |