File size: 20,106 Bytes
f4f6007
 
124cef3
607becf
 
 
 
b4e28c8
607becf
 
 
 
 
b4e28c8
349493b
 
 
 
 
 
 
b4e28c8
607becf
 
 
 
 
 
 
 
349493b
 
 
 
 
 
 
 
 
 
 
607becf
349493b
607becf
349493b
b4e28c8
607becf
b4e28c8
607becf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4f6007
124cef3
 
607becf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4f6007
607becf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124cef3
b4e28c8
 
 
 
 
607becf
 
 
 
b4e28c8
 
 
 
 
 
 
607becf
 
 
 
 
 
 
 
 
b4e28c8
 
 
607becf
 
 
 
124cef3
607becf
 
 
 
124cef3
607becf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124cef3
607becf
 
 
 
 
 
124cef3
607becf
b4e28c8
607becf
b4e28c8
 
 
 
 
 
 
 
 
607becf
 
 
 
124cef3
607becf
 
 
 
 
 
 
 
 
 
 
 
 
124cef3
607becf
 
 
124cef3
607becf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124cef3
607becf
 
124cef3
607becf
f4f6007
607becf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import random
from typing import Tuple, List, Dict, Any, Optional
import time
import colorsys
import math
from PIL import Image, ImageDraw, ImageFilter

# Try importing Stable Diffusion dependencies
try:
    from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
    STABLE_DIFFUSION_AVAILABLE = True
except ImportError:
    print("Warning: diffusers package not available. Artistic visualization will be disabled.")
    STABLE_DIFFUSION_AVAILABLE = False

# Try importing 3D visualization dependencies
try:
    import plotly.express as px
    PLOTLY_3D_AVAILABLE = True
except ImportError:
    print("Warning: plotly.express not available. 3D visualization will be limited.")
    PLOTLY_3D_AVAILABLE = False

# Initialize Stable Diffusion only if available
pipe = None
if STABLE_DIFFUSION_AVAILABLE:
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX"
    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    
    try:
        pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
        pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler", shift=5)
        pipe = pipe.to(device)
        print(f"✅ Stable Diffusion initialized on {device}")
    except Exception as e:
        print(f"⚠️ Could not initialize Stable Diffusion: {e}")
        STABLE_DIFFUSION_AVAILABLE = False

# Constants
MAX_SEED = np.iinfo(np.int32).max
DEFAULT_GRID_SIZE = 64
WAVE_TYPES = ["sine", "cosine", "gaussian", "square"]
MEMORY_OPERATIONS = [
    "wave_memory", 
    "interference", 
    "resonance", 
    "hot_tub_mode", 
    "emotional_resonance",
    "pattern_completion"
]

# Color palettes for different emotional states
COLOR_PALETTES = {
    "positive": ["#FF5E5B", "#D8D8F6", "#E8AA14", "#32E875", "#3C91E6"],
    "neutral": ["#FAFFFD", "#A1CDF4", "#7D83FF", "#3A3042", "#080708"],
    "negative": ["#1B1B1E", "#373F51", "#58A4B0", "#A9BCD0", "#D8DBE2"]
}

class EmotionalContext:
    """Implements Mem|8's emotional context structure"""
    def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
        self.device = device
        self.valence = torch.zeros(1).to(device)  # -128 to 127: negative to positive
        self.arousal = torch.zeros(1).to(device)  # 0 to 255: intensity level
        self.context = torch.zeros(1).to(device)  # Contextual flags
        self.safety = torch.ones(1).to(device) * 100  # Safety level (0-100)
        
        # Memory blanket parameters
        self.resonance_freq = torch.tensor(1.0).to(device)
        self.filter_strength = torch.tensor(0.5).to(device)
        
        # Hot tub mode parameters
        self.hot_tub_active = False
        self.hot_tub_temperature = torch.tensor(37.0).to(device)  # Default comfortable temperature
        self.hot_tub_participants = []
        
    def update(self, valence: float, arousal: Optional[float] = None):
        """Update emotional context based on valence and arousal"""
        self.valence = torch.tensor([valence]).to(self.device)
        
        # If arousal not provided, calculate it based on valence intensity
        if arousal is None:
            self.arousal = torch.abs(torch.tensor([valence * 2])).to(self.device)
        else:
            self.arousal = torch.tensor([arousal]).to(self.device)
            
        # Update resonance frequency based on emotional state
        self.resonance_freq = 1.0 + torch.sigmoid(self.valence/128)
        
        # Update filter strength based on arousal
        self.filter_strength = torch.sigmoid(self.arousal/128)
        
        return self
    
    def get_color_palette(self):
        """Get color palette based on emotional valence"""
        if self.valence.item() > 20:
            return COLOR_PALETTES["positive"]
        elif self.valence.item() < -20:
            return COLOR_PALETTES["negative"]
        else:
            return COLOR_PALETTES["neutral"]
    
    def activate_hot_tub(self, temperature: float = 37.0):
        """Activate hot tub mode with specified temperature"""
        self.hot_tub_active = True
        self.hot_tub_temperature = torch.tensor(temperature).to(self.device)
        return self
    
    def deactivate_hot_tub(self):
        """Deactivate hot tub mode"""
        self.hot_tub_active = False
        self.hot_tub_participants = []
        return self
    
    def add_hot_tub_participant(self, participant: str):
        """Add participant to hot tub session"""
        if self.hot_tub_active and participant not in self.hot_tub_participants:
            self.hot_tub_participants.append(participant)
        return self
    
    def get_state_dict(self) -> Dict[str, Any]:
        """Get emotional context as dictionary for display"""
        return {
            "valence": self.valence.item(),
            "arousal": self.arousal.item(),
            "resonance_frequency": self.resonance_freq.item(),
            "filter_strength": self.filter_strength.item(),
            "hot_tub_active": self.hot_tub_active,
            "hot_tub_temperature": self.hot_tub_temperature.item() if self.hot_tub_active else None,
            "hot_tub_participants": self.hot_tub_participants if self.hot_tub_active else [],
            "safety_level": self.safety.item()
        }

class WaveProcessor:
    """Processes wave-based memory patterns"""
    def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
        self.device = device
        
    def create_wave_pattern(self, 
                           size: int, 
                           frequency: float, 
                           amplitude: float, 
                           wave_type: str = "sine") -> torch.Tensor:
        """Create a wave pattern as described in Mem|8 paper"""
        t = torch.linspace(0, 2*np.pi, size).to(self.device)
        x = torch.linspace(0, 2*np.pi, size).to(self.device)
        T, X = torch.meshgrid(t, x, indexing='ij')
        
        if wave_type == "sine":
            return amplitude * torch.sin(frequency * T + X)
        elif wave_type == "cosine":
            return amplitude * torch.cos(frequency * T + X)
        elif wave_type == "gaussian":
            # Create a Gaussian wave pattern
            sigma = size / (4 * frequency)
            mu_t = size / 2
            mu_x = size / 2
            gauss_t = torch.exp(-((t - mu_t) ** 2) / (2 * sigma ** 2))
            gauss_x = torch.exp(-((x - mu_x) ** 2) / (2 * sigma ** 2))
            G_T, G_X = torch.meshgrid(gauss_t, gauss_x, indexing='ij')
            return amplitude * G_T * G_X
        elif wave_type == "square":
            # Create a square wave pattern
            square_t = torch.sign(torch.sin(frequency * t))
            square_x = torch.sign(torch.sin(frequency * x))
            S_T, S_X = torch.meshgrid(square_t, square_x, indexing='ij')
            return amplitude * S_T * S_X
        else:
            # Default to sine wave
            return amplitude * torch.sin(frequency * T + X)
    
    def apply_emotional_modulation(self, 
                                  wave: torch.Tensor, 
                                  emotion: EmotionalContext) -> torch.Tensor:
        """Apply emotional modulation to wave pattern"""
        # Modulate wave based on emotional valence
        emotional_mod = torch.exp(emotion.valence/128 * wave)
        return wave * emotional_mod
    
    def create_interference_pattern(self, 
                                   wave1: torch.Tensor, 
                                   wave2: torch.Tensor, 
                                   emotion: EmotionalContext) -> torch.Tensor:
        """Create interference between two wave patterns"""
        interference = wave1 + wave2
        # Weight by emotional valence
        emotional_weight = torch.sigmoid(emotion.valence/128) * interference
        return emotional_weight
    
    def create_resonance_pattern(self, 
                                base_wave: torch.Tensor, 
                                emotion: EmotionalContext) -> torch.Tensor:
        """Create resonance pattern based on emotional state"""
        resonant_wave = self.create_wave_pattern(
            base_wave.shape[0], 
            emotion.resonance_freq.item(), 
            1.0
        )
        resonance = base_wave * resonant_wave
        return resonance
    
    def apply_memory_blanket(self, 
                            wave: torch.Tensor, 
                            emotion: EmotionalContext) -> torch.Tensor:
        """Apply memory blanket filtering as described in the paper"""
        # Create a filter based on wave amplitude and emotional state
        wave_amplitude = torch.abs(wave)
        importance_threshold = emotion.filter_strength * wave_amplitude.mean()
        
        # Apply the filter - keep only significant waves
        filtered_wave = wave * (wave_amplitude > importance_threshold).float()
        return filtered_wave
    
    def create_hot_tub_pattern(self, 
                              size: int, 
                              emotion: EmotionalContext) -> torch.Tensor:
        """Create a hot tub pattern for safe exploration"""
        if not emotion.hot_tub_active:
            return torch.zeros((size, size)).to(self.device)
        
        # Create base wave pattern
        base_wave = self.create_wave_pattern(size, 1.0, 1.0, "sine")
        
        # Modulate based on hot tub temperature
        temp_factor = emotion.hot_tub_temperature / 50.0  # Normalize to 0-1 range
        temp_wave = self.create_wave_pattern(size, temp_factor.item(), 0.5, "gaussian")
        
        # Add ripples for each participant
        participant_count = len(emotion.hot_tub_participants)
        if participant_count > 0:
            ripple_wave = self.create_wave_pattern(
                size, 
                2.0 + participant_count * 0.5, 
                0.3, 
                "gaussian"
            )
            hot_tub_pattern = base_wave + temp_wave + ripple_wave
        else:
            hot_tub_pattern = base_wave + temp_wave
        
        # Apply safety modulation
        safety_factor = emotion.safety / 100.0
        return hot_tub_pattern * safety_factor
    
    def create_pattern_completion(self, 
                                 size: int, 
                                 emotion: EmotionalContext, 
                                 completion_ratio: float = 0.5) -> Tuple[torch.Tensor, torch.Tensor]:
        """Create a pattern completion demonstration"""
        # Create original pattern
        original = self.create_wave_pattern(size, 2.0, 1.0)
        
        # Create mask for incomplete pattern (randomly remove portions)
        mask = torch.rand(size, size).to(self.device) > completion_ratio
        incomplete = original * mask
        
        # Apply emotional context to reconstruction
        emotional_weight = torch.sigmoid(emotion.valence/128)
        
        # Simple reconstruction algorithm (in real system would be more sophisticated)
        # Here we're just doing a simple interpolation
        kernel_size = 3
        padding = kernel_size // 2
        
        # Create a kernel for interpolation
        kernel = torch.ones(1, 1, kernel_size, kernel_size).to(self.device) / (kernel_size ** 2)
        
        # Reshape for convolution
        incomplete_reshaped = incomplete.reshape(1, 1, size, size)
        
        # Apply convolution for interpolation
        with torch.no_grad():
            reconstructed = torch.nn.functional.conv2d(
                incomplete_reshaped, 
                kernel, 
                padding=padding
            ).reshape(size, size)
        
        # Blend original where mask exists
        reconstructed = torch.where(mask, reconstructed, original)
        
        # Apply emotional modulation
        reconstructed = reconstructed * (0.5 + emotional_weight * 0.5)
        
        return incomplete, reconstructed

def generate_memory_prompt(operation: str, emotion_valence: float) -> str:
    """Generate artistic prompts based on memory operation and emotional state"""
    base_prompts = {
        "wave_memory": "memories flowing like waves in an infinite ocean, ",
        "interference": "two waves of memory intersecting and creating patterns, ",
        "resonance": "resonating waves of consciousness forming harmonious patterns, ",
        "hot_tub_mode": "a safe space for exploring memories, like a warm therapeutic pool, ",
        "emotional_resonance": "emotions as colorful waves interacting with memory patterns, ",
        "pattern_completion": "fragmented memories being reconstructed into complete patterns, "
    }
    
    emotion_desc = "serene and peaceful" if -20 <= emotion_valence <= 20 else \
                  "joyful and vibrant" if emotion_valence > 20 else \
                  "dark and introspective"
    
    style = "digital art, abstract, flowing, wave patterns, "
    
    # Add more specific styling based on operation
    if operation == "hot_tub_mode":
        style += "warm colors, therapeutic atmosphere, "
    elif operation == "emotional_resonance":
        style += "vibrant colors, emotional energy visualization, "
    elif operation == "pattern_completion":
        style += "fragmented to whole transition, reconstruction, "
    
    prompt = f"{base_prompts[operation]}{emotion_desc}, {style} ethereal, dreamlike quality"
    return prompt

def create_wave_visualization(wave_data: np.ndarray, emotion: EmotionalContext) -> go.Figure:
    """Create an interactive 3D visualization of wave data"""
    # Get dimensions
    n, m = wave_data.shape
    
    # Create coordinate grids
    x = np.linspace(0, 1, m)
    y = np.linspace(0, 1, n)
    X, Y = np.meshgrid(x, y)
    
    # Get color palette based on emotional state
    colors = emotion.get_color_palette()
    colorscale = [[0, colors[0]], 
                 [0.25, colors[1]], 
                 [0.5, colors[2]], 
                 [0.75, colors[3]], 
                 [1, colors[4]]]
    
    # Create 3D surface plot
    fig = go.Figure(data=[go.Surface(
        z=wave_data,
        x=X,
        y=Y,
        colorscale=colorscale,
        lighting=dict(
            ambient=0.6,
            diffuse=0.8,
            fresnel=0.2,
            roughness=0.5,
            specular=1.0
        ),
        contours={
            "z": {"show": True, "start": -2, "end": 2, "size": 0.1, "color":"white"}
        }
    )])
    
    # Update layout
    fig.update_layout(
        title=dict(
            text="Memory Wave Visualization",
            font=dict(size=24, color="#333333")
        ),
        scene=dict(
            xaxis_title="Space",
            yaxis_title="Time",
            zaxis_title="Amplitude",
            aspectratio=dict(x=1, y=1, z=0.8),
            camera=dict(
                eye=dict(x=1.5, y=1.5, z=1.2)
            )
        ),
        margin=dict(l=0, r=0, b=0, t=30),
        template="plotly_white"
    )
    
    return fig

def create_2d_comparison(wave1: np.ndarray, wave2: np.ndarray, 
                         title1: str, title2: str, 
                         emotion: EmotionalContext) -> go.Figure:
    """Create a side-by-side comparison of two wave patterns"""
    # Get color palette
    colors = emotion.get_color_palette()
    
    # Create subplots
    fig = make_subplots(
        rows=1, cols=2,
        subplot_titles=(title1, title2),
        specs=[[{"type": "heatmap"}, {"type": "heatmap"}]]
    )
    
    # Add heatmaps
    fig.add_trace(
        go.Heatmap(
            z=wave1,
            colorscale=[[0, colors[0]], [1, colors[-1]]],
            showscale=False
        ),
        row=1, col=1
    )
    
    fig.add_trace(
        go.Heatmap(
            z=wave2,
            colorscale=[[0, colors[0]], [1, colors[-1]]],
            showscale=True
        ),
        row=1, col=2
    )
    
    # Update layout
    fig.update_layout(
        title_text="Memory Pattern Comparison",
        height=500,
        template="plotly_white"
    )
    
    return fig

def create_artistic_visualization(prompt: str, seed: int) -> Optional[Image.Image]:
    """Create artistic visualization using Stable Diffusion"""
    if not STABLE_DIFFUSION_AVAILABLE or pipe is None:
        return None
    
    try:
        generator = torch.Generator().manual_seed(seed)
        image = pipe(
            prompt=prompt,
            negative_prompt="text, watermark, signature, blurry, distorted",
            guidance_scale=1.5,
            num_inference_steps=8,
            width=768,
            height=768,
            generator=generator,
        ).images[0]
        
        return image
    except Exception as e:
        print(f"Error generating artistic visualization: {e}")
        return None

def create_emotional_wave_animation(size: int, emotion: EmotionalContext) -> Image.Image:
    """Create an animated-like visualization of emotional waves"""
    # Create a blank image
    width, height = size * 10, size * 10
    image = Image.new('RGBA', (width, height), (255, 255, 255, 0))
    draw = ImageDraw.Draw(image)
    
    # Get color palette
    colors = emotion.get_color_palette()
    
    # Calculate wave parameters based on emotional state
    valence = emotion.valence.item()
    arousal = emotion.arousal.item()
    
    # Normalize to 0-1 range
    valence_norm = (valence + 128) / 255
    arousal_norm = arousal / 255
    
    # Create multiple wave layers
    for i in range(5):
        # Calculate wave parameters
        amplitude = 50 + i * 20 * arousal_norm
        frequency = 0.01 + i * 0.005 * (1 + valence_norm)
        phase = i * math.pi / 5
        
        # Select color
        color = colors[i % len(colors)]
        
        # Draw wave
        points = []
        for x in range(width):
            # Calculate y position with multiple sine waves
            y = height/2 + amplitude * math.sin(frequency * x + phase)
            y += amplitude/2 * math.sin(frequency * 2 * x + phase)
            points.append((x, y))
        
        # Draw wave with varying thickness
        for j in range(3):
            thickness = 5 - j
            draw.line(points, fill=color, width=thickness)
    
    # Apply blur for smoother appearance
    image = image.filter(ImageFilter.GaussianBlur(radius=3))
    
    return image

def quantum_memory_ops(
    input_size: int, 
    operation: str, 
    emotion_valence: float,
    emotion_arousal: float = None,
    wave_type: str = "sine",
    hot_tub_temp: float = 37.0,
    hot_tub_participants: str = "",
    generate_art: bool = True,
    seed: int = 42
) -> Tuple[str, go.Figure, go.Figure, Image.Image]:
    """Perform quantum-inspired memory operations using Mem|8 concepts."""
    # Initialize components
    device = "cuda" if torch.cuda.is_available() else "cpu"
    emotion = EmotionalContext(device)
    emotion.update(emotion_valence, emotion_arousal)
    
    wave_processor = WaveProcessor(device)
    
    # Process hot tub participants if provided
    if hot_tub_participants:
        participants = [p.strip() for p in hot_tub_participants.split(',')]
        emotion.activate_hot_tub(hot_tub_temp)
        for participant in participants:
            emotion.add_hot_tub_participant(participant)
    
    results = []
    wave_viz = None
    comparison_viz = None
    art_viz = None
    
    # Add header with emotional context
    results.append(f"🌊 Mem|8 Wave Memory Analysis 🌊")
    results.append(f"Operation: {operation}")
    results.append(f"Wave Type: {wave_type}")
    results.append(f"Grid Size: {input_size}x{input_size}")
    results.append("")
    
    if operation == "wave_memory":
        # Create memory wave pattern (M = A·exp(iωt-kx)·D·E)
        wave = wave_processor.create_wave_pattern(input_size, 2.0, 1.0, wave_type)