File size: 8,328 Bytes
6a3ea0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# app.py
import os
import io
import subprocess
from pathlib import Path
from datetime import datetime
import gradio as gr
from PIL import Image
import piexif
import tempfile
import base64
import requests
# For AI detection: example using a HF model via transformers
import torch
from torchvision import transforms
from PIL import Image
# ---- CONFIG ----
# If you want to call TinEye/Bing APIs, put keys here or use Spaces secrets.
TINEYE_API_KEY = os.environ.get("TINEYE_API_KEY","")
BING_API_KEY = os.environ.get("BING_API_KEY","")
HF_AI_MODEL = "Dafilab/ai-image-detector" # مثال؛ يمكن تغييره أو استخدام SuSy
IMG_SIZE = 380
# ---- helper utilities ----
def save_bytes_to_file(b, path):
with open(path, "wb") as f:
f.write(b)
def extract_exif(image_bytes):
try:
exif_dict = piexif.load(image_bytes)
# Convert to readable pairs where possible
res = {}
for ifd in exif_dict:
if not exif_dict[ifd]:
continue
res[ifd] = {}
for tag, val in exif_dict[ifd].items():
name = piexif.TAGS[ifd].get(tag, {"name": str(tag)})["name"]
res[ifd][name] = val
return res
except Exception as e:
return {"error": str(e)}
# ---- AI detector loader (simple) ----
def load_ai_model():
try:
from transformers import ViTImageProcessor, ViTForImageClassification
processor = ViTImageProcessor.from_pretrained(HF_AI_MODEL)
model = ViTForImageClassification.from_pretrained(HF_AI_MODEL)
model.eval()
return processor, model
except Exception as e:
print("Could not load HF model:", e)
return None, None
processor, hf_model = load_ai_model()
def detect_ai_image(pil_image):
if processor is None or hf_model is None:
return {"status":"model_not_loaded"}
inputs = processor(images=pil_image, return_tensors="pt")
with torch.no_grad():
outputs = hf_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0].tolist()
# label mapping may vary by model
labels = hf_model.config.id2label if hasattr(hf_model.config, "id2label") else {0:"REAL",1:"FAKE"}
top_idx = max(range(len(probs)), key=lambda i:probs[i])
return {"label": labels.get(top_idx, str(top_idx)), "confidence": float(probs[top_idx])}
# ---- video keyframes (requires ffmpeg available) ----
def extract_keyframes_from_video(video_path, max_frames=5):
out_dir = tempfile.mkdtemp()
# extract at most `max_frames` evenly spaced frames
# first count duration via ffprobe
try:
cmd = [
"ffprobe", "-v", "error", "-select_streams", "v:0",
"-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1",
video_path
]
proc = subprocess.run(cmd, capture_output=True, text=True, timeout=10)
duration = float(proc.stdout.strip() or 0.0)
except Exception:
duration = 0
frames = []
if duration <= 0:
# fallback: extract first few frames
timestamps = [0, 1, 2, 3, 4][:max_frames]
else:
step = max(1, duration / max_frames)
timestamps = [i*step for i in range(max_frames)]
for i, t in enumerate(timestamps):
out_path = os.path.join(out_dir, f"frame_{i}.jpg")
cmd = ["ffmpeg", "-ss", str(t), "-i", video_path, "-frames:v", "1", "-q:v", "2", out_path, "-y"]
try:
subprocess.run(cmd, capture_output=True, timeout=15)
if os.path.exists(out_path):
frames.append(out_path)
except Exception:
continue
return frames
# ---- reverse search links generator ----
def build_reverse_search_links_for_file(file_url=None, local_file_path=None):
"""
If file_url is provided (public URL), build direct links that open reverse image search with that URL.
If not, we will upload file temporarily to imgur anonymous (optional) or provide download blob.
Here we will prefer to return search-by-upload pages.
"""
links = {}
if file_url:
# Google (open image search by URL), Yandex, TinEye, Bing
links['Google'] = f"https://www.google.com/searchbyimage?image_url={file_url}"
links['Yandex'] = f"https://yandex.com/images/search?rpt=imageview&url={file_url}"
links['TinEye'] = f"https://tineye.com/search?url={file_url}"
links['Bing'] = f"https://www.bing.com/images/search?q=imgurl:{file_url}&view=detailv2"
else:
# provide pages where user can upload the file manually
links['Google_upload'] = "https://images.google.com/ (use camera icon → upload image)"
links['TinEye_upload'] = "https://tineye.com/ (upload image)"
links['Yandex_upload'] = "https://yandex.com/images/ (upload image)"
links['Bing_upload'] = "https://www.bing.com/images (click camera)"
return links
# ---- face detection (simple cropping) ----
def detect_and_crop_faces(pil_image):
try:
import face_recognition
except Exception as e:
return {"error":"face_recognition_not_installed_or_failed"}
img = pil_image.convert("RGB")
arr = face_recognition.api.load_image_file(io.BytesIO())
# face_recognition expects a path or numpy array; workaround: convert
np_img = face_recognition.api.load_image_file(io.BytesIO(img.tobytes())) if False else None
# Simpler: use face_recognition.face_locations on PIL via numpy
import numpy as np
np_img = np.array(img)
locs = face_recognition.face_locations(np_img)
faces = []
for i, (top,right,bottom,left) in enumerate(locs):
crop = img.crop((left, top, right, bottom))
b = io.BytesIO()
crop.save(b, format="JPEG")
faces.append({'index':i, 'image_bytes': b.getvalue()})
return faces
# ---- main Gradio function ----
def process_upload(file):
# file: UploadedFile object from Gradio
fname = file.name
b = file.read()
out = {"filename": fname}
# if image
try:
pil = Image.open(io.BytesIO(b))
out['type'] = "image"
# EXIF
try:
exif = extract_exif(b)
out['exif'] = exif
except Exception as e:
out['exif'] = {"error": str(e)}
# AI detection
try:
ai_res = detect_ai_image(pil)
out['ai_detection'] = ai_res
except Exception as e:
out['ai_detection'] = {"error":str(e)}
# provide reverse-search links (no public URL available)
out['reverse_links'] = build_reverse_search_links_for_file()
# prepare preview
buf = io.BytesIO()
pil.thumbnail((800,800))
pil.save(buf, format="JPEG")
preview_b64 = base64.b64encode(buf.getvalue()).decode()
out['preview_base64'] = preview_b64
return out
except Exception:
# assume video
tv = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(fname)[1])
tv.write(b)
tv.flush()
frames = extract_keyframes_from_video(tv.name, max_frames=5)
out['type'] = "video"
out['keyframes'] = []
for path in frames:
with open(path,"rb") as f:
out['keyframes'].append(base64.b64encode(f.read()).decode())
out['reverse_links'] = build_reverse_search_links_for_file()
return out
# ---- Gradio UI ----
css = """
.gradio-container { max-width: 1100px; margin: auto; }
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("## أداة تحقق صور/فيديو مبسطة (صحفيين)\n- ارفع صورة أو فيديو\n- سيعرض EXIF، كشف إذا كانت الصورة مولدة بالـAI (موديل HF إن تم تحميله)، ويفصل keyframes من الفيديو\n- يقدّم روابط سريعة للبحث العكسي (افتحها لتفقد أول ظهور على الويب)\n")
with gr.Row():
inp = gr.File(label="رفع صورة أو فيديو (JPEG/PNG/MP4...)")
btn = gr.Button("تحقق")
out_json = gr.JSON(label="نتيجة الفحص (JSON)")
preview = gr.Image(label="معاينة / keyframes", interactive=False)
btn.click(process_upload, inputs=inp, outputs=out_json)
if __name__ == "__main__":
demo.launch()
|