amrish123's picture
Create app.py
73f5697 verified
raw
history blame contribute delete
986 Bytes
import gradio as gr
from transformers import pipeline
import torch
# Load summarizer
device = 0 if torch.cuda.is_available() else -1
summarizer = pipeline(
"summarization",
model="csebuetnlp/mT5_multilingual_XLSum",
tokenizer="csebuetnlp/mT5_multilingual_XLSum",
device=device
)
print("βœ… Model loaded on:", "GPU" if device == 0 else "CPU")
# Function for API and UI
def summarize_text(text):
if not text.strip():
return "❌ Error: No text provided."
max_len = 1000
clean_text = text.strip()[:max_len]
result = summarizer([clean_text], max_length=130, min_length=30, do_sample=False)
return result[0]["summary_text"]
# Gradio Interface (UI + API)
iface = gr.Interface(
fn=summarize_text,
inputs=gr.Textbox(lines=10, placeholder="Paste your news article here..."),
outputs="text",
title="Multilingual News Summarizer",
description="Summarizes news articles using mT5 multilingual XLSum model."
)
iface.launch()