Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
from TTS.api import TTS
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
+
import speech_recognition as sr
|
8 |
+
from difflib import SequenceMatcher
|
9 |
+
|
10 |
+
# Load models
|
11 |
+
qg_pipeline = pipeline("text2text-generation", model="valhalla/t5-small-e2e-qg")
|
12 |
+
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
|
13 |
+
|
14 |
+
# Simulate QA by extracting key sentence from input text (placeholder)
|
15 |
+
def extract_answer(question, context):
|
16 |
+
for line in context.split("\n"):
|
17 |
+
if any(word.lower() in line.lower() for word in question.split()[:3]):
|
18 |
+
return line
|
19 |
+
return ""
|
20 |
+
|
21 |
+
def generate_questions(text):
|
22 |
+
output = qg_pipeline(f"generate questions: {text}", num_return_sequences=3)
|
23 |
+
questions = [q["generated_text"] for q in output]
|
24 |
+
return (questions, text, 0) # this tuple is stored in state
|
25 |
+
|
26 |
+
def ask_question(state):
|
27 |
+
questions, context, idx = state
|
28 |
+
if idx >= len(questions):
|
29 |
+
return "β
All questions asked.", None, state
|
30 |
+
|
31 |
+
question = questions[idx]
|
32 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as fp:
|
33 |
+
tts.tts_to_file(text=question, file_path=fp.name)
|
34 |
+
audio_path = fp.name
|
35 |
+
|
36 |
+
return question, audio_path, (questions, context, idx + 1)
|
37 |
+
|
38 |
+
def transcribe_and_feedback(audio_path, state):
|
39 |
+
questions, context, idx = state
|
40 |
+
if idx == 0 or idx > len(questions):
|
41 |
+
return "Please ask a question first.", state
|
42 |
+
|
43 |
+
recognizer = sr.Recognizer()
|
44 |
+
with sr.AudioFile(audio_path) as source:
|
45 |
+
audio_data = recognizer.record(source)
|
46 |
+
try:
|
47 |
+
user_answer = recognizer.recognize_google(audio_data)
|
48 |
+
except:
|
49 |
+
return "β Could not understand your answer.", state
|
50 |
+
|
51 |
+
# Compare with expected answer
|
52 |
+
question = questions[idx - 1] # subtract 1 because idx was already incremented
|
53 |
+
expected = extract_answer(question, context)
|
54 |
+
ratio = SequenceMatcher(None, user_answer.lower(), expected.lower()).ratio()
|
55 |
+
|
56 |
+
if ratio > 0.6:
|
57 |
+
feedback = f"β
Good answer: {user_answer}"
|
58 |
+
else:
|
59 |
+
feedback = f"β Try again. You said: {user_answer}"
|
60 |
+
|
61 |
+
return feedback, (questions, context, idx)
|
62 |
+
|
63 |
+
with gr.Blocks() as app:
|
64 |
+
gr.Markdown("### π Interactive Speaking Practice with Coursebook Dialogues")
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
course_text = gr.Textbox(lines=8, label="π Paste Coursebook Text")
|
68 |
+
gen_btn = gr.Button("π Generate Questions")
|
69 |
+
|
70 |
+
question_text = gr.Textbox(label="ποΈ Current Question")
|
71 |
+
question_audio = gr.Audio(label="π Listen to Question", type="filepath")
|
72 |
+
ask_btn = gr.Button("βΆοΈ Ask Next Question")
|
73 |
+
|
74 |
+
user_audio = gr.Audio(label="π§ Your Spoken Answer", sources="microphone", type="filepath")
|
75 |
+
transcribe_btn = gr.Button("π Submit Answer")
|
76 |
+
feedback_output = gr.Textbox(label="π¨οΈ Feedback")
|
77 |
+
|
78 |
+
conversation_state = gr.State()
|
79 |
+
|
80 |
+
gen_btn.click(fn=generate_questions, inputs=course_text, outputs=conversation_state)
|
81 |
+
ask_btn.click(fn=ask_question, inputs=conversation_state, outputs=[question_text, question_audio, conversation_state])
|
82 |
+
transcribe_btn.click(fn=transcribe_and_feedback, inputs=[user_audio, conversation_state], outputs=[feedback_output, conversation_state])
|
83 |
+
|
84 |
+
app.launch()
|