File size: 6,836 Bytes
6a58068
e00c8e8
 
6a58068
 
 
 
 
e00c8e8
 
6a58068
 
 
 
 
e00c8e8
 
6a58068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00c8e8
6a58068
 
 
 
 
dc36465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00c8e8
 
6a58068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00c8e8
 
6a58068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00c8e8
 
 
 
 
 
 
7bfdced
e00c8e8
 
 
 
 
 
6a58068
e00c8e8
6a58068
 
e00c8e8
6a58068
 
e00c8e8
 
dc36465
 
 
 
 
 
e00c8e8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
import statsmodels
import scipy
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from statsmodels.stats.multitest import fdrcorrection
from scipy import stats
import pandas as pd

import argparse
import os

# increase length of string in pandas
pd.options.display.max_colwidth = 100


def post_hoc_ixi(df_in: pd.DataFrame, outdir: str = './'):
    df = df_in[df_in["Experiment"] == "IXI"]

    TRE_values = df["TRE"]
    m_comp = pairwise_tukeyhsd(df["TRE"], df["Model"], alpha=0.05)
    model_names = np.unique(df["Model"])

    all_pvalues = -1 * np.ones((len(model_names), len(model_names)), dtype=np.float32)
    pvs = m_comp.pvalues
    cnt = 0
    for i in range(len(model_names)):
        for j in range(i + 1, len(model_names)):
            all_pvalues[i, j] = pvs[cnt]
            cnt += 1
    all_pvalues = np.round(all_pvalues, 6)
    all_pvalues = all_pvalues[:-1, 1:]

    col_new_names = ["\textbf{\rot{\multicolumn{1}{r}{" + n + "}}}" for n in model_names]

    out_pd = pd.DataFrame(data=all_pvalues, index=model_names[:-1], columns=col_new_names[1:])
    stack = out_pd.stack()
    stack[(0 < stack) & (stack <= 0.001)] = '\cellcolor{green!25}$<$0.001'

    for i in range(stack.shape[0]):
        try:
            curr = stack[i]
            if (float(curr) > 0.0011) & (float(curr) < 0.05):
                stack[i] = '\cellcolor{green!50}' + str(np.round(stack[i], 3))
            elif (float(curr) >= 0.05) & (float(curr) < 0.1):
                stack[i] = '\cellcolor{red!50}' + str(np.round(stack[i], 3))
            elif (float(curr) >= 0.1):
                stack[i] = '\cellcolor{red!25}' + str(np.round(stack[i], 3))
        except Exception:
            continue

    out_pd = stack.unstack()
    out_pd = out_pd.replace(-1.0, "-")
    out_pd = out_pd.replace(-0.0, '\cellcolor{green!25}$<$0.001')

    with open(os.path.join(outdir, "tukey_pvalues_result_IXI.txt"), "w") as pfile:
        pfile.write("{}".format(out_pd.to_latex(escape=False, column_format="r" + "c"*all_pvalues.shape[1], bold_rows=True)))
    
    print(out_pd)


def study_seg_guided_ANTs(df_in: pd.DataFrame):
    tre_sg = df_in[(df_in["Experiment"] == "COMET_TL_Ft2Stp") & (df_in["Model"] == "SG-NSD")]["TRE"]
    tre_syn = df_in[(df_in["Experiment"] == "ANTs") & (df_in["Model"] == "SyN")]["TRE"]
    tre_syncc = df_in[(df_in["Experiment"] == "ANTs") & (df_in["Model"] == "SyNCC")]["TRE"]

    pvs = list()
    pvs.append(stats.wilcoxon(tre_sg, tre_syn, alternative="less").pvalue)
    pvs.append(stats.wilcoxon(tre_sg, tre_syncc, alternative="less").pvalue)

    # False discovery rate to get corrected p-values
    corrected_pvs = fdrcorrection(pvs, alpha=0.05, method="indep")[1]  # Benjamini/Hochberg -> method="indep"

    print("SG-NSD vs SyN:", corrected_pvs[0])
    print("SG-NSD vs SyNCC:", corrected_pvs[1])


def study_baseline_ANTs(df_in: pd.DataFrame):
    tre_bl = df_in[(df_in["Experiment"] == "COMET_TL_Ft2Stp") & (df_in["Model"] == "BL-N")]["TRE"]
    tre_syn = df_in[(df_in["Experiment"] == "ANTs") & (df_in["Model"] == "SyN")]["TRE"]
    tre_syncc = df_in[(df_in["Experiment"] == "ANTs") & (df_in["Model"] == "SyNCC")]["TRE"]

    pvs = list()
    pvs.append(stats.wilcoxon(tre_bl, tre_syn, alternative="less").pvalue)
    pvs.append(stats.wilcoxon(tre_bl, tre_syncc, alternative="less").pvalue)

    # False discovery rate to get corrected p-values
    corrected_pvs = fdrcorrection(pvs, alpha=0.05, method="indep")[1]  # Benjamini/Hochberg -> method="indep"

    print("BL-N vs SyN:", corrected_pvs[0])
    print("BL-N vs SyNCC:", corrected_pvs[1])


def study_transfer_learning_benefit(df_in: pd.DataFrame):
    df_tl = df_in[df_in["Experiment"] == "COMET_TL_Ft2Stp"]
    df_orig = df[df["Experiment"] == "COMET"]

    pvs = []
    for model in ["BL-N", "SG-NSD", "UW-NSD"]:

        curr_tl = df_tl[df_tl["Model"] == model]
        curr_orig = df_orig[df_orig["Model"] == model]

        TRE_tl = curr_tl["TRE"]
        TRE_orig = curr_orig["TRE"]

        # perform non-parametric hypothesis test to assess significance
        ret = stats.wilcoxon(TRE_tl, TRE_orig, alternative="less")
        pv = ret.pvalue
        pvs.append(pv)

    # False discovery rate to get corrected p-values
    corrected_pvs = fdrcorrection(pvs, alpha=0.05, method="indep")[1]  # Benjamini/Hochberg -> method="indep"

    print("BL-N:", corrected_pvs[0])
    print("SG-NSD:", corrected_pvs[1])
    print("UW-NSD:", corrected_pvs[2])

def post_hoc_comet(df_in: pd.DataFrame):
    df_tl = df_in[df_in["Experiment"] == "COMET_TL_Ft2Stp"]

    filter_ = np.array([x in ["BL-N", "SG-NSD", "UW-NSD"] for x in df_tl["Model"]])

    df_tl = df_tl[filter_]

    # Is TRE in SG-NSD significantly lower than TRE in BL-N?
    ret1 = stats.wilcoxon(
        df_tl[df_tl["Model"] == "SG-NSD"]["TRE"],
        df_tl[df_tl["Model"] == "BL-N"]["TRE"],
        alternative="less"
    )
    pv1 = ret1.pvalue

    # Is TRE in UW-NSD significantly lower than TRE in SG_NSD?
    ret2 = stats.wilcoxon(
        df_tl[df_tl["Model"] == "UW-NSD"]["TRE"],
        df_tl[df_tl["Model"] == "SG-NSD"]["TRE"],
        alternative="less"
    )
    pv2 = ret2.pvalue

    # False discovery rate to get corrected p-values
    pvs = [pv1, pv2]
    corrected_pvs = fdrcorrection(pvs, alpha=0.05, method="indep")[1]  # Benjamini/Hochberg -> method="indep"

    print("Seg-guiding benefit:", corrected_pvs[0])
    print("Uncertainty-weighting benefit:", corrected_pvs[1])


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--file', '-f', type=str, help='CSV file with the metrics')
    parser.add_argument('--sep', type=str, help='CSV Separator (default: ;)', default=';')
    parser.add_argument('--outdir', type=str, help='Output directory (default: .)', default='./')
    args = parser.parse_args()

    assert os.path.exists(args.file), 'CSV file not found'
    os.makedirs(args.outdir, exist_ok=True)
    df = pd.read_csv(args.file, sep=args.sep)
    if "Unnamed" in df.columns[0]:
        df = df.iloc[:, 1:]
    if any(['_' in m for m in df["Model"].unique()]):
        df["Model"] = [x.replace("_", "-") for x in df["Model"]]

    print("\nComparing all contrasts in TRE of all models in the IXI dataset:")
    post_hoc_ixi(df, args.outdir)

    print("\nTransfer learning benefit (COMET):")
    study_transfer_learning_benefit(df)

    print("\nAssessing whether there is a benefit to segmentation-guiding and uncertainty weighting (COMET):")
    post_hoc_comet(df)

    print("\nAssessing the performance of BL-N vs ANTs registration (COMET):")
    study_baseline_ANTs(df)

    print("\nAssessing the performance of SG-NSD vs ANTs registration (COMET):")
    study_seg_guided_ANTs(df)

    print('Statsmodels v.: ' + statsmodels.__version__)
    print('Scipy v.: ' + scipy.__version__)