File size: 8,888 Bytes
c0d9a8c
 
4f28aaa
eb714e7
c0d9a8c
 
 
eb714e7
 
 
 
c0d9a8c
 
 
 
 
 
 
 
4f28aaa
 
c0d9a8c
 
 
ccf7b17
c0d9a8c
 
 
 
 
 
49b38ba
 
c0d9a8c
eb714e7
c0d9a8c
7914847
 
 
 
 
c0d9a8c
 
 
 
 
 
 
 
 
eb714e7
1f7c99f
 
 
c0d9a8c
eb714e7
c0d9a8c
 
ba66955
1f7c99f
c0d9a8c
7914847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c336bf
7914847
 
c0d9a8c
7914847
 
 
c0d9a8c
7914847
 
64be597
d24d994
eb714e7
49b38ba
 
 
 
 
d3ab234
49b38ba
 
 
 
 
c0d9a8c
49b38ba
 
d3ab234
49b38ba
 
 
 
 
 
 
 
d3ab234
c0d9a8c
 
 
 
 
 
7914847
c0d9a8c
 
 
 
eb714e7
 
 
 
 
 
 
c0d9a8c
 
 
 
7914847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb714e7
 
 
7914847
 
 
 
 
 
 
 
c0d9a8c
eb714e7
 
c0d9a8c
 
 
 
1f7c99f
 
 
 
 
 
7914847
1f7c99f
 
 
 
 
 
 
 
 
 
7914847
1f7c99f
 
 
 
 
 
 
 
eb714e7
 
1f7c99f
 
7914847
1f7c99f
 
 
 
 
 
 
7914847
 
eb714e7
ba66955
c0d9a8c
 
49b38ba
 
 
 
 
 
 
c0d9a8c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import gradio as gr

from .compute import run_model
from .logger import setup_logger, read_logs
from .utils import load_ct_to_numpy


# setup logging
LOGGER = setup_logger()


class WebUI:
    def __init__(
        self,
        model_name: str = None,
        cwd: str = "/home/user/app/",
        share: int = 1,
    ):
        # global states
        self.fixed_images = []
        self.moving_images = []
        self.pred_images = []

        # @TODO: This should be dynamically set based on chosen volume size
        self.nb_slider_items = 128

        self.model_name = model_name
        self.cwd = cwd
        self.share = share

        self.class_names = {
            "Brain": "B",
            "Liver": "L"
        }
        self.class_name = "Brain"

        self.fixed_image_path = None
        self.moving_image_path = None
        self.fixed_seg_path = None
        self.moving_seg_path = None

        # define widgets not to be rendered immediantly, but later on
        self.slider = gr.Slider(
            1,
            self.nb_slider_items,
            value=1,
            step=1,
            label="Which 2D slice to show",
        )

        self.run_btn = gr.Button("Run analysis", show_progress="full", elem_id="button").style(
            full_width=False, size="lg"
        )

    def set_class_name(self, value):
        LOGGER.info(f"Changed task to: {value}")
        self.class_name = value

    def upload_file(self, files):
        return [f.name for f in files]

    def update_fixed(self, cfile):
        self.fixed_image_path = cfile.name
        return self.fixed_image_path
    
    def update_moving(self, cfile):
        self.moving_image_path = cfile.name
        return self.moving_image_path
    
    def update_fixed_seg(self, cfile):
        self.fixed_seg_path = cfile.name
        return self.fixed_seg_path
    
    def update_moving_seg(self, cfile):
        self.moving_seg_path = cfile.name
        return self.moving_seg_path

    def process(self):
        if (self.fixed_image_path is None) or (self.moving_image_path is None):
            raise ValueError("Please, select both a fixed and moving image before running inference.")

        output_path = self.cwd
        
        run_model(self.fixed_image_path, self.moving_image_path, self.fixed_seg_path, self.moving_seg_path, output_path, self.class_names[self.class_name])

        # reset - to avoid using these segmentations again for new images
        self.fixed_seg_path = None
        self.moving_seg_path = None

        self.fixed_images = load_ct_to_numpy(self.fixed_image_path)
        self.moving_images = load_ct_to_numpy(self.moving_image_path)
        self.pred_images = load_ct_to_numpy(output_path + "pred_image.nii.gz")

        return self.pred_images[0]

    def get_fixed_image(self, k):
        k = int(k) - 1
        out = [gr.Image.update(visible=False)] * self.nb_slider_items
        out[k] = gr.Image.update(
            self.fixed_images[k],
            visible=True,
        )
        return out
    
    def get_moving_image(self, k):
        k = int(k) - 1
        out = [gr.Image.update(visible=False)] * self.nb_slider_items
        out[k] = gr.Image.update(
            self.moving_images[k],
            visible=True,
        )
        return out
    
    def get_pred_image(self, k):
        k = int(k) - 1
        out = [gr.Image.update(visible=False)] * self.nb_slider_items
        out[k] = gr.Image.update(
            self.pred_images[k],
            visible=True,
        )
        return out

    def run(self):
        css = """
        #model-2d {
        height: 512px;
        margin: auto;
        }
        #upload {
        height: 120px;
        }
        #button {
        height: 120px;
        }
        #dropdown {
        height: 120px;
        }
        """
        with gr.Blocks(css=css) as demo:
            with gr.Row():
                
                with gr.Column():
                    file_fixed = gr.File(file_count="single", elem_id="upload", label="Select Fixed Image", show_label=True)
                    file_fixed.upload(self.update_fixed, file_fixed, file_fixed)

                    file_moving = gr.File(file_count="single", elem_id="upload", label="Select Moving Image", show_label=True)
                    file_moving.upload(self.update_moving, file_moving, file_moving)

                #with gr.Group():
                with gr.Column():
                    file_fixed_seg = gr.File(file_count="single", elem_id="upload", label="Select Fixed Seg Image", show_label=True)
                    file_fixed_seg.upload(self.update_fixed_seg, file_fixed_seg, file_fixed_seg)

                    file_moving_seg = gr.File(file_count="single", elem_id="upload", label="Select Moving Seg Image", show_label=True)
                    file_moving_seg.upload(self.update_moving_seg, file_moving_seg, file_moving_seg)

                with gr.Column():
                    model_selector = gr.Dropdown(
                        list(self.class_names.keys()),
                        label="Task",
                        info="Which task to perform image-to-registration on",
                        multiselect=False,
                        size="sm",
                        default="Brain",
                        elem_id="dropdown",

                    )
                    model_selector.input(
                        fn=lambda x: self.set_class_name(x),
                        inputs=model_selector,
                        outputs=None,
                    )

                    self.run_btn.render()

                logs = gr.Textbox(label="Logs", info="Verbose from inference will be displayed below.", max_lines=8, autoscroll=True)
                demo.load(read_logs, None, logs, every=1)

            with gr.Row():
                with gr.Box():
                    with gr.Column():

                        with gr.Row():
                            fixed_images = []
                            for i in range(self.nb_slider_items):
                                visibility = True if i == 1 else False
                                t = gr.Image(
                                    visible=visibility, elem_id="model-2d", label="fixed image", show_label=True,
                                ).style(
                                    height=512,
                                    width=512,
                                )
                                fixed_images.append(t)
                            
                            moving_images = []
                            for i in range(self.nb_slider_items):
                                visibility = True if i == 1 else False
                                t = gr.Image(
                                    visible=visibility, elem_id="model-2d", label="moving image", show_label=True,
                                ).style(
                                    height=512,
                                    width=512,
                                )
                                moving_images.append(t)
                            
                            pred_images = []
                            for i in range(self.nb_slider_items):
                                if i == 0:
                                    first_pred_component = t
                                visibility = True if i == 1 else False
                                t = gr.Image(
                                    visible=visibility, elem_id="model-2d", label="predicted fixed image", show_label=True,
                                ).style(
                                    height=512,
                                    width=512,
                                )
                                pred_images.append(t)
                            
                            self.run_btn.click(
                                fn=self.process,
                                inputs=None,
                                outputs=first_pred_component,
                            )

                        self.slider.input(
                            self.get_fixed_image, self.slider, fixed_images
                        )
                        self.slider.input(
                            self.get_moving_image, self.slider, moving_images
                        )
                        self.slider.input(
                            self.get_pred_image, self.slider, pred_images
                        )

                        self.slider.render()

        # sharing app publicly -> share=True:
        # https://gradio.app/sharing-your-app/
        # inference times > 60 seconds -> need queue():
        # https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
        demo.queue().launch(
            server_name="0.0.0.0", server_port=7860, share=self.share
        )