DDMR / ANTs /eval_ants.py
jpdefrutos's picture
ANTs script
70656f8
raw
history blame
8.23 kB
import h5py
import ants
import numpy as np
import DeepDeformationMapRegistration.utils.constants as C
import os
from tqdm import tqdm
import re
from DeepDeformationMapRegistration.losses import StructuralSimilarity_simplified, NCC, GeneralizedDICEScore, HausdorffDistanceErosion, target_registration_error
from DeepDeformationMapRegistration.ms_ssim_tf import MultiScaleStructuralSimilarity
from DeepDeformationMapRegistration.utils.misc import DisplacementMapInterpolator, segmentation_ohe_to_cardinal
from argparse import ArgumentParser
import tensorflow as tf
DATASET_LOCATION = '/mnt/EncryptedData1/Users/javier/vessel_registration/3Dirca/dataset/EVAL'
DATASET_NAMES = 'test_sample_\d{4}.h5'
DATASET_FILENAME = 'volume'
IMGS_FOLDER = '/home/jpdefrutos/workspace/DeepDeformationMapRegistration/Centerline/imgs'
WARPED_MOV = 'warpedmovout'
WARPED_FIX = 'warpedfixout'
FWD_TRFS = 'fwdtransforms'
INV_TRFS = 'invtransforms'
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--dataset', type=str, help='Directory with the images')
parser.add_argument('--outdir', type=str, help='Output directory')
args = parser.parse_args()
dataset_files = os.listdir(args.dataset)
dataset_files.sort()
dataset_files = [os.path.join(args.dataset, f) for f in dataset_files if re.match(DATASET_NAMES, f)]
dataset_iterator = tqdm(dataset_files)
f = h5py.File(dataset_files[0], 'r')
image_output_shape = list(f['fix_image'][:].shape[:-1])
f.close()
#### TF prep
metric_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric,
NCC(image_input_shape).metric,
vxm.losses.MSE().loss,
MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric,
GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric,
HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).metric,
GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric_macro]
fix_img_ph = tf.placeholder(tf.float32, (1, *image_output_shape, 1), name='fix_img')
pred_img_ph = tf.placeholder(tf.float32, (1, *image_output_shape, 1), name='pred_img')
fix_seg_ph = tf.placeholder(tf.float32, (1, *image_output_shape, nb_labels), name='fix_seg')
pred_seg_ph = tf.placeholder(tf.float32, (1, *image_output_shape, nb_labels), name='pred_seg')
ssim_tf = metric_fncs[0](fix_img_ph, pred_img_ph)
ncc_tf = metric_fncs[1](fix_img_ph, pred_img_ph)
mse_tf = metric_fncs[2](fix_img_ph, pred_img_ph)
ms_ssim_tf = metric_fncs[3](fix_img_ph, pred_img_ph)
dice_tf = metric_fncs[4](fix_seg_ph, pred_seg_ph)
hd_tf = metric_fncs[5](fix_seg_ph, pred_seg_ph)
dice_macro_tf = metric_fncs[6](fix_seg_ph, pred_seg_ph)
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
config.gpu_options.allow_growth = True
config.log_device_placement = False ## to log device placement (on which device the operation ran)
config.allow_soft_placement = True
sess = tf.Session(config=config)
tf.keras.backend.set_session(sess)
####
dm_interp = DisplacementMapInterpolator(image_output_shape, 'griddata')
metrics_file = os.path.join(output_folder, 'metrics.csv')
for file_path in dataset_iterator:
file_num = int(re.findall('(\d+)', os.path.split(file_path)[-1])[0])
dataset_iterator.set_description('{} ({}): laoding data'.format(file_num, dataset_name))
with h5py.File(file_path, 'r') as vol_file:
fix_img = vol_file['fix_image'][:]
mov_img = vol_file['mov_image'][:]
fix_seg = vol_file['fix_segmentations'][:]
mov_seg = vol_file['mov_segmentations'][:]
fix_centroid = vol_file['fix_centroids'][:]
mov_centroid = vol_file['mov_centroids'][:]
# ndarray to ANTsImage
fix_img = ants.make_image(fix_img.shape, fix_img)
mov_img = ants.make_image(mov_img.shape, mov_img)
reg_output_syn = ants.registration(fix_img, mov_img, 'SyN')
reg_output_syncc = ants.registration(fix_img, mov_img, 'SyNCC')
mov_to_fix_trf_syn = reg_output_syn[FWD_TRFS]
mov_to_fix_trf_syncc = reg_output_syn[FWD_TRFS]
if not len(mov_to_fix_trf_syn) and not len(mov_to_fix_trf_syncc):
print('ERR: Registration failed for: '+file_path)
else:
for reg_output in [reg_output_syn, reg_output_syncc]:
mov_to_fix_trf = reg_output[FWD_TRFS]
pred_img = reg_output[WARPED_MOV].numpy()
pred_seg = mov_to_fix_trf.apply_to_image(ants.make_image(mov_seg.shape, mov_seg)).numpy()
with sess.as_default():
dice, hd, dice_macro = sess.run([dice_tf, hd_tf, dice_macro_tf],
{'fix_seg:0': fix_seg, 'pred_seg:0': pred_seg})
pred_seg_card = segmentation_ohe_to_cardinal(pred_seg).astype(np.float32)
mov_seg_card = segmentation_ohe_to_cardinal(mov_seg).astype(np.float32)
fix_seg_card = segmentation_ohe_to_cardinal(fix_seg).astype(np.float32)
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
{'fix_img:0': fix_img, 'pred_img:0': pred_img})
ms_ssim = ms_ssim[0]
tf.keras.backend.clear_session()
# TRE
pred_centroids = dm_interp(mov_to_fix_trf.numpy(), mov_centroid, backwards=True) + mov_centroid
upsample_scale = 128 / 64
fix_centroids_isotropic = fix_centroids * upsample_scale
pred_centroids_isotropic = pred_centroids * upsample_scale
fix_centroids_isotropic = np.divide(fix_centroids_isotropic, C.IXI_DATASET_iso_to_cubic_scales)
pred_centroids_isotropic = np.divide(pred_centroids_isotropic, C.IXI_DATASET_iso_to_cubic_scales)
tre_array = target_registration_error(fix_centroids_isotropic, pred_centroids_isotropic, False).eval()
tre = np.mean([v for v in tre_array if not np.isnan(v)])
new_line = [step, ssim, ms_ssim, ncc, mse, dice, dice_macro, hd, t1-t0, tre, len(missing_lbls), missing_lbls]
with open(metrics_file, 'a') as f:
f.write(';'.join(map(str, new_line))+'\n')
save_nifti(fix_img[0, ...], os.path.join(output_folder, '{:03d}_fix_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(mov_img[0, ...], os.path.join(output_folder, '{:03d}_mov_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(pred_img[0, ...], os.path.join(output_folder, '{:03d}_pred_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(fix_seg_card[0, ...], os.path.join(output_folder, '{:03d}_fix_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(mov_seg_card[0, ...], os.path.join(output_folder, '{:03d}_mov_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(pred_seg_card[0, ...], os.path.join(output_folder, '{:03d}_pred_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
plot_predictions(fix_img, mov_img, disp_map, pred_img, os.path.join(output_folder, '{:03d}_figures_img.png'.format(step)), show=False)
plot_predictions(fix_seg, mov_seg, disp_map, pred_seg, os.path.join(output_folder, '{:03d}_figures_seg.png'.format(step)), show=False)
save_disp_map_img(disp_map, 'Displacement map', os.path.join(output_folder, '{:03d}_disp_map_fig.png'.format(step)), show=False)
print('Summary\n=======\n')
print('\nAVG:\n' + str(pd.read_csv(metrics_file, sep=';', header=0).mean(axis=0)) + '\nSTD:\n' + str(
pd.read_csv(metrics_file, sep=';', header=0).std(axis=0)))
print('\n=======\n')