jpdefrutos's picture
Update DeepDeformationMapRegistration package
74c6a32
raw
history blame
6.4 kB
import os
import errno
import shutil
import numpy as np
from scipy.interpolate import griddata, Rbf, LinearNDInterpolator, NearestNDInterpolator
from skimage.measure import regionprops
from DeepDeformationMapRegistration.layers.b_splines import interpolate_spline
from DeepDeformationMapRegistration.utils.thin_plate_splines import ThinPlateSplines
from tensorflow import squeeze
def try_mkdir(dir, verbose=True):
try:
os.makedirs(dir)
except OSError as err:
if err.errno == errno.EEXIST and verbose:
print("Directory " + dir + " already exists")
else:
raise ValueError("Can't create dir " + dir)
else:
print("Created directory " + dir)
def function_decorator(new_name):
""""
Change the __name__ property of a function using new_name.
:param new_name:
:return:
"""
def decorator(func):
func.__name__ = new_name
return func
return decorator
class DatasetCopy:
def __init__(self, dataset_location, copy_location=None, verbose=True):
self.__copy_loc = os.path.join(os.getcwd(), 'temp_dataset') if copy_location is None else copy_location
self.__dst_loc = dataset_location
self.__verbose = verbose
def copy_dataset(self):
shutil.copytree(self.__dst_loc, self.__copy_loc)
if self.__verbose:
print('{} copied to {}'.format(self.__dst_loc, self.__copy_loc))
return self.__copy_loc
def delete_temp(self):
shutil.rmtree(self.__copy_loc)
if self.__verbose:
print('Deleted: ', self.__copy_loc)
class DisplacementMapInterpolator:
def __init__(self,
image_shape=[64, 64, 64],
method='rbf'):
assert method in ['rbf', 'griddata', 'tf', 'tps'], "Method must be 'rbf' or 'griddata'"
self.method = method
self.image_shape = image_shape
self.grid = self.__regular_grid()
def __regular_grid(self):
xx = np.linspace(0, self.image_shape[0], self.image_shape[0], endpoint=False, dtype=np.uint16)
yy = np.linspace(0, self.image_shape[0], self.image_shape[0], endpoint=False, dtype=np.uint16)
zz = np.linspace(0, self.image_shape[0], self.image_shape[0], endpoint=False, dtype=np.uint16)
xx, yy, zz = np.meshgrid(xx, yy, zz)
return np.stack([xx.flatten(), yy.flatten(), zz.flatten()], axis=0).T
def __call__(self, disp_map, interp_points, backwards=False):
disp_map = disp_map.reshape([-1, 3])
grid_pts = self.grid.copy()
if backwards:
grid_pts = np.add(grid_pts, disp_map).astype(np.float32)
disp_map *= -1
if self.method == 'rbf':
interpolator = Rbf(grid_pts[:, 0], grid_pts[:, 1], grid_pts[:, 2], disp_map[:, :],
method='thin_plate', mode='N-D')
disp = interpolator(interp_points)
elif self.method == 'griddata':
linear_interp = LinearNDInterpolator(grid_pts, disp_map)
disp = linear_interp(interp_points).copy()
del linear_interp
if np.any(np.isnan(disp)):
# It might happen (though it shouldn't) that the interpolation point is outside the convex hull of grid points.
# in this situation, linear interpolation fails and will put NaN. Nearest can give a value, so we are going to
# substitute those unexpected NaNs with the nearest value. Unexpected == not in interp_points
nan_disp_idx = set(np.unique(np.argwhere(np.isnan(disp))[:, 0]))
nan_interp_pts_idx = set(np.unique(np.argwhere(np.isnan(interp_points))[:, 0]))
idx = nan_disp_idx - nan_interp_pts_idx if len(nan_disp_idx) > len(nan_interp_pts_idx) else nan_interp_pts_idx - nan_disp_idx
idx = list(idx)
if len(idx):
# We have unexpected NaNs
near_interp = NearestNDInterpolator(grid_pts, disp_map)
near_disp = near_interp(interp_points[idx, ...]).copy()
del near_interp
for n, i in enumerate(idx):
disp[i, ...] = near_disp[n, ...]
elif self.method == 'tf':
# Order: 1 -> linear, 2 -> thin plate, 3 -> cubic
disp = squeeze(interpolate_spline(grid_pts[np.newaxis, ...][::4, :], # Batch axis
disp_map[np.newaxis, ...][::4, :],
interp_points[np.newaxis, ...], order=2), axis=0)
else:
tps_interp = ThinPlateSplines(grid_pts[::8, :], self.grid.copy().astype(np.float32)[::8, :])
disp = tps_interp.interpolate(interp_points).eval()
del tps_interp
return disp
def get_segmentations_centroids(segmentations, ohe=True, expected_lbls=range(0, 28), missing_centroid=[np.nan]*3, brain_study=True):
segmentations = np.squeeze(segmentations)
if ohe:
segmentations = np.sum(segmentations, axis=-1).astype(np.uint8)
missing_lbls = set(expected_lbls) - set(np.unique(segmentations))
if brain_study:
segmentations += np.ones_like(segmentations) # Regionsprops neglect the label 0. But we need it, so offset all labels by 1
else:
missing_lbls = set(expected_lbls) - set(np.unique(segmentations))
seg_props = regionprops(segmentations)
centroids = np.asarray([c.centroid for c in seg_props]).astype(np.float32)
for lbl in missing_lbls:
idx = expected_lbls.index(lbl)
centroids = np.insert(centroids, idx, missing_centroid, axis=0)
return centroids.copy(), missing_lbls
def segmentation_ohe_to_cardinal(segmentation):
cpy = segmentation.copy()
for lbl in range(segmentation.shape[-1]):
cpy[..., lbl] *= (lbl + 1)
# Add the Background
cpy = np.concatenate([np.zeros(segmentation.shape[:-1])[..., np.newaxis], cpy], axis=-1)
return np.argmax(cpy, axis=-1)[..., np.newaxis]
def segmentation_cardinal_to_ohe(segmentation):
# Keep in mind that we don't handle the overlap between the segmentations!
cpy = np.tile(np.zeros_like(segmentation), (1, 1, 1, len(np.unique(segmentation)[1:])))
for ch, lbl in enumerate(np.unique(segmentation)[1:]):
cpy[segmentation == lbl, ch] = 1
return cpy