jpdefrutos's picture
Updating latest changes
286a978
raw
history blame
7.04 kB
import os
import argparse
import re
import warnings
import nibabel as nib
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
segm_cm = cm.get_cmap('Dark2', 256)
segm_cm = segm_cm(np.linspace(0, 1, 28))
segm_cm[0, :] = np.asarray([0, 0, 0, 0])
segm_cm = ListedColormap(segm_cm)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dir', type=str, help='Directories where the models are stored', default=None)
parser.add_argument('-o', '--output', type=str, help='Output directory', default=os.getcwd())
parser.add_argument('--overwrite', type=bool, default=True)
args = parser.parse_args()
assert args.dir is not None, "No directories provided. Stopping"
list_fix_img = list()
list_mov_img = list()
list_fix_seg = list()
list_mov_seg = list()
list_pred_img = list()
list_pred_seg = list()
print('Fetching data...')
for r, d, f in os.walk(args.dir):
if os.path.split(r)[1] == 'Evaluation_paper':
for name in f:
if re.search('^050', name) and name.endswith('nii.gz'):
if re.search('fix_img', name) and name.endswith('nii.gz'):
list_fix_img.append(os.path.join(r, name))
elif re.search('mov_img', name):
list_mov_img.append(os.path.join(r, name))
elif re.search('fix_seg', name):
list_fix_seg.append(os.path.join(r, name))
elif re.search('mov_seg', name):
list_mov_seg.append(os.path.join(r, name))
elif re.search('pred_img', name):
list_pred_img.append(os.path.join(r, name))
elif re.search('pred_seg', name):
list_pred_seg.append(os.path.join(r, name))
# Figure: all coronal views
# Fix img | Mov img
# BASELINE 1 | BASELINE 2 | SEGGUIDED
# UW 1 | UW 2 | UW 3
list_fix_img.sort()
list_fix_seg.sort()
list_mov_img.sort()
list_mov_seg.sort()
list_pred_img.sort()
list_pred_seg.sort()
print('Making Test_data.png...')
selected_slice = 30
fix_img = np.asarray(nib.load(list_fix_img[0]).dataobj)[..., selected_slice, 0]
mov_img = np.asarray(nib.load(list_mov_img[0]).dataobj)[..., selected_slice, 0]
fix_seg = np.asarray(nib.load(list_fix_seg[0]).dataobj)[..., selected_slice, 0]
mov_seg = np.asarray(nib.load(list_mov_seg[0]).dataobj)[..., selected_slice, 0]
fig, ax = plt.subplots(nrows=1, ncols=4, figsize=(9, 3), dpi=200)
for i, (img, title) in enumerate(zip([(fix_img, fix_seg), (mov_img, mov_seg)],
[('Fixed image', 'Fixed Segms.'), ('Moving image', 'Moving Segms.')])):
ax[i].imshow(img[0], origin='lower', cmap='Greys_r')
ax[i+2].imshow(img[0], origin='lower', cmap='Greys_r')
ax[i+2].imshow(img[1], origin='lower', cmap=segm_cm, alpha=0.6)
ax[i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[i+2].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[i].set_xlabel(title[0], fontsize=16)
ax[i+2].set_xlabel(title[1], fontsize=16)
plt.tight_layout()
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Test_data.png')):
warnings.warn('File Test_data.png already exists. Skipping')
else:
plt.savefig(os.path.join(args.output, 'Test_data.png'), format='png')
plt.close()
print('Making Pred_data.png...')
fig, ax = plt.subplots(nrows=2, ncols=6, figsize=(9, 3), dpi=200)
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)):
img = np.asarray(nib.load(pred_img_path).dataobj)[..., selected_slice, 0]
seg = np.asarray(nib.load(pred_seg_path).dataobj)[..., selected_slice, 0]
ax[0, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(seg, origin='lower', cmap=segm_cm, alpha=0.6)
ax[0, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
model = re.search('((UW|SEGGUIDED|BASELINE).*)_{2,}MET', pred_img_path).group(1).rstrip('_')
model = model.replace('_Lsim', ' ')
model = model.replace('_Lseg', ' ')
model = model.replace('_L', ' ')
model = model.replace('_', ' ')
model = model.upper()
model = ' '.join(model.split())
ax[1, i].set_xlabel(model, fontsize=9)
plt.tight_layout()
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Pred_data.png')):
warnings.warn('File Pred_data.png already exists. Skipping')
else:
plt.savefig(os.path.join(args.output, 'Pred_data.png'), format='png')
plt.close()
print('Making Pred_data_large.png...')
fig, ax = plt.subplots(nrows=2, ncols=8, figsize=(9, 3), dpi=200)
list_pred_img = [list_mov_img[0]] + list_pred_img
list_pred_img = [list_fix_img[0]] + list_pred_img
list_pred_seg = [list_mov_seg[0]] + list_pred_seg
list_pred_seg = [list_fix_seg[0]] + list_pred_seg
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)):
img = np.asarray(nib.load(pred_img_path).dataobj)[..., selected_slice, 0]
seg = np.asarray(nib.load(pred_seg_path).dataobj)[..., selected_slice, 0]
ax[0, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(seg, origin='lower', cmap=segm_cm, alpha=0.6)
ax[0, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
if i > 1:
model = re.search('((UW|SEGGUIDED|BASELINE).*)_{2,}MET', pred_img_path).group(1).rstrip('_')
model = model.replace('_Lsim', ' ')
model = model.replace('_Lseg', ' ')
model = model.replace('_L', ' ')
model = model.replace('_', ' ')
model = model.upper()
model = ' '.join(model.split())
elif i == 0:
model = 'Moving image'
else:
model = 'Fixed image'
ax[1, i].set_xlabel(model, fontsize=7)
plt.tight_layout()
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Pred_data_large.png')):
warnings.warn('File Pred_data.png already exists. Skipping')
else:
plt.savefig(os.path.join(args.output, 'Pred_data_large.png'), format='png')
plt.close()
print('...done!')