DDMR / ddmr /callbacks.py
andreped's picture
Renamed module to ddmr
a27d55f
import tensorflow as tf
import tensorflow.keras.backend as K
import logging
import numpy as np
class RollingAverageWeighting(tf.keras.callbacks.Callback):
def __init__(self, weights: list, loss_names: list, ref_loss: str, epoch_update):
super(RollingAverageWeighting, self).__init__()
assert len(weights) == len(loss_names)
self.weights = weights
self.loss_weights = dict()
for name, w in zip(loss_names, weights):
self.loss_weights[name] = w
self.epoch_update = epoch_update - 1 # Epoch is zero based
self.rolling_avg = dict()
self.ref_loss = ref_loss
loss_names.append(ref_loss)
for name in loss_names:
self.rolling_avg[name] = 0
def on_epoch_end(self, epoch, logs=None):
# Get the average loss for each loss function
if epoch > self.epoch_update:
# Updated loss weights
for i, name in enumerate(self.rolling_avg.keys()):
# avg[n] = avg[n-1] + 1/n * (new_val - avg[n-1]), where n is the size of the rolling avg
self.rolling_avg[name] += (1 / self.epoch_update) * (logs.get(name) - self.rolling_avg[name])
else:
for i, name in enumerate(self.rolling_avg.keys()):
self.rolling_avg[name] += logs.get(name)
if epoch == self.epoch_update: # Time to start updating the weights!
self.rolling_avg[name] /= self.epoch_update
if not epoch % self.epoch_update:
self.update_weights()
def update_weights(self):
new_weights = list()
for name in self.loss_weights.keys():
K.set_value(self.loss_weights[name], self.rolling_avg[self.ref_loss] / self.rolling_avg[name])
new_weights.append(self.rolling_avg[self.ref_loss] / self.rolling_avg[name])
out_str = ''
for name, val in zip(self.loss_weights.keys(), new_weights):
out_str += '{}: {:7.2f}\t'.format(name, val)
print('WEIGHTS UPDATE: ' + out_str)
class UncertaintyWeightingRollingAverageCallback(tf.keras.callbacks.Callback):
def __init__(self, method, epoch_update):
super(UncertaintyWeightingRollingAverageCallback, self).__init__()
self.method = method
self.epoch_update = epoch_update
def on_epoch_end(self, epoch, logs=None):
if epoch > self.epoch_update:
self.method()
print('Calling method: '+self.method.__name__)