|
import os, sys |
|
|
|
|
|
|
|
|
|
|
|
|
|
import tensorflow as tf |
|
import voxelmorph as vxm |
|
from voxelmorph.tf.modelio import LoadableModel, store_config_args |
|
from tensorflow.keras.layers import UpSampling3D |
|
|
|
|
|
class WeaklySupervised(LoadableModel): |
|
|
|
@store_config_args |
|
def __init__(self, inshape, all_labels: [list, tuple], nb_unet_features=None, int_steps=5, bidir=False, |
|
int_downsize=1, outshape=None, **kwargs): |
|
""" |
|
Parameters: |
|
inshape: Input shape. e.g. (192, 192, 192) |
|
all_labels: List of all labels included in training segmentations. |
|
hot_labels: List of labels to output as one-hot maps. |
|
nb_unet_features: Unet convolutional features. See VxmDense documentation for more information. |
|
int_steps: Number of flow integration steps. The warp is non-diffeomorphic when this value is 0. |
|
int_downsize: Dowsampling of the displacement map. Integer |
|
kwargs: Forwarded to the internal VxmDense model. |
|
""" |
|
|
|
mov_segm = tf.keras.Input((*inshape, len(all_labels)), name='mov_segmentations_input') |
|
|
|
fix_img = tf.keras.Input((*inshape, 1), name='fix_image_input') |
|
mov_img = tf.keras.Input((*inshape, 1), name='mov_image_input') |
|
|
|
input_model = tf.keras.Model(inputs=[mov_img, fix_img], outputs=[mov_img, fix_img]) |
|
|
|
vxm_model = vxm.networks.VxmDense(inshape=inshape, |
|
nb_unet_features=nb_unet_features, |
|
input_model=input_model, |
|
int_steps=int_steps, |
|
bidir=bidir, |
|
int_downsize=int_downsize, |
|
**kwargs) |
|
|
|
pred_segm = vxm.layers.SpatialTransformer(interp_method='linear', indexing='ij', name='interp_segm')( |
|
[mov_segm, vxm_model.references.pos_flow]) |
|
|
|
inputs = [mov_img, fix_img, mov_segm] |
|
model_outputs = vxm_model.outputs |
|
if outshape is not None: |
|
scale_factors = [o//i for i, o in zip(inshape, outshape)] |
|
upsampling_layer = UpSampling3D(scale_factors) |
|
|
|
model_outputs[0] = upsampling_layer(model_outputs[0]) |
|
|
|
pred_segm = upsampling_layer(pred_segm) |
|
|
|
model_outputs[1] = upsampling_layer(scale_factors)(model_outputs[1]) |
|
model_outputs[1] = tf.multiply(model_outputs[1], tf.cast(scale_factors, model_outputs[1].dtype)) |
|
|
|
|
|
pred_fix_image = tf.identity(model_outputs[0], name='pred_fix_image') |
|
pred_dm = tf.identity(model_outputs[1], name='pred_dm') |
|
pred_segm = tf.identity(pred_segm, name='pred_fix_segm') |
|
outputs = [pred_fix_image, pred_segm, pred_dm] |
|
|
|
self.references = LoadableModel.ReferenceContainer() |
|
self.references.pred_segm = pred_segm |
|
self.references.pred_img = vxm_model.outputs[0] |
|
self.references.pos_flow = vxm_model.references.pos_flow |
|
|
|
super(WeaklySupervised, self).__init__(inputs=inputs, outputs=outputs) |
|
|
|
def get_registration_model(self): |
|
return tf.keras.Model(self.inputs, self.references.pos_flow) |
|
|
|
def register(self, mov_img, mov_segm, fix_segm): |
|
return self.get_registration_model().predict([mov_segm, fix_segm, mov_img]) |
|
|
|
def apply_transform(self, mov_img, mov_segm, fix_segm, interp_method='linear'): |
|
warp_model = self.get_registration_model() |
|
img_input = tf.keras.Input(shape=mov_img.shape[1:], name='input_img') |
|
pred_img = vxm.layers.SpatialTransformer(interp_method=interp_method)([img_input, warp_model.output]) |
|
return tf.keras.Model(warp_model.inputs, pred_img).predict([mov_segm, fix_segm, mov_img]) |
|
|
|
|