Commit
·
4b5777a
1
Parent(s):
7b8d670
Removed unused constants from main
Browse filesCalled to package constants instead of declaring new ones in main (IMAGE_INPUT_SHAPE -> IMAGE_SHAPE)
DeepDeformationMapRegistration/main.py
CHANGED
|
@@ -34,24 +34,6 @@ from importlib.util import find_spec
|
|
| 34 |
|
| 35 |
LOGGER = logging.getLogger(__name__)
|
| 36 |
|
| 37 |
-
MODELS_FILE = {'L': {'BL-N': './models/liver/bl_ncc.h5',
|
| 38 |
-
'BL-S': './models/liver/bl_ncc_ssim.h5',
|
| 39 |
-
'SG-ND': './models/liver/sg_ncc_dsc.h5',
|
| 40 |
-
'SD-NSD': './models/liver/sg_ncc_ssim_dsc.h5',
|
| 41 |
-
'UW-NSD': './models/liver/uw_ncc_ssim_dsc.h5',
|
| 42 |
-
'UW-NSDH': './models/liver/uw_ncc_ssim_dsc_hd.h5',
|
| 43 |
-
},
|
| 44 |
-
'B': {'BL-N': './models/brain/bl_ncc.h5',
|
| 45 |
-
'BL-S': './models/brain/bl_ncc_ssim.h5',
|
| 46 |
-
'SG-ND': './models/brain/sg_ncc_dsc.h5',
|
| 47 |
-
'SD-NSD': './models/brain/sg_ncc_ssim_dsc.h5',
|
| 48 |
-
'UW-NSD': './models/brain/uw_ncc_ssim_dsc.h5',
|
| 49 |
-
'UW-NSDH': './models/brain/uw_ncc_ssim_dsc_hd.h5',
|
| 50 |
-
}
|
| 51 |
-
}
|
| 52 |
-
|
| 53 |
-
IMAGE_INTPUT_SHAPE = np.asarray([128, 128, 128, 1])
|
| 54 |
-
|
| 55 |
|
| 56 |
def rigidly_align_images(image_1: str, image_2: str) -> nib.Nifti1Image:
|
| 57 |
"""
|
|
@@ -280,7 +262,7 @@ def main():
|
|
| 280 |
|
| 281 |
image_shape_crop = fixed_image.shape
|
| 282 |
# 2.3 Resize the images to the expected input size
|
| 283 |
-
zoom_factors =
|
| 284 |
fixed_image = zoom(fixed_image, zoom_factors)
|
| 285 |
moving_image = zoom(moving_image, zoom_factors)
|
| 286 |
fixed_image = min_max_norm(fixed_image)
|
|
@@ -328,7 +310,7 @@ def main():
|
|
| 328 |
enc_features = [32, 64, 128, 256, 512, 1024] # const.ENCODER_FILTERS
|
| 329 |
dec_features = enc_features[::-1] + [16, 16] # const.ENCODER_FILTERS[::-1]
|
| 330 |
nb_features = [enc_features, dec_features]
|
| 331 |
-
network = vxm.networks.VxmDense(inshape=
|
| 332 |
nb_unet_features=nb_features,
|
| 333 |
int_steps=0)
|
| 334 |
network.load_weights(MODEL_FILE, by_name=True)
|
|
|
|
| 34 |
|
| 35 |
LOGGER = logging.getLogger(__name__)
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
def rigidly_align_images(image_1: str, image_2: str) -> nib.Nifti1Image:
|
| 39 |
"""
|
|
|
|
| 262 |
|
| 263 |
image_shape_crop = fixed_image.shape
|
| 264 |
# 2.3 Resize the images to the expected input size
|
| 265 |
+
zoom_factors = C.IMAGE_SHAPE / image_shape_crop
|
| 266 |
fixed_image = zoom(fixed_image, zoom_factors)
|
| 267 |
moving_image = zoom(moving_image, zoom_factors)
|
| 268 |
fixed_image = min_max_norm(fixed_image)
|
|
|
|
| 310 |
enc_features = [32, 64, 128, 256, 512, 1024] # const.ENCODER_FILTERS
|
| 311 |
dec_features = enc_features[::-1] + [16, 16] # const.ENCODER_FILTERS[::-1]
|
| 312 |
nb_features = [enc_features, dec_features]
|
| 313 |
+
network = vxm.networks.VxmDense(inshape=C.IMAGE_SHAPE[:-1],
|
| 314 |
nb_unet_features=nb_features,
|
| 315 |
int_steps=0)
|
| 316 |
network.load_weights(MODEL_FILE, by_name=True)
|
DeepDeformationMapRegistration/utils/constants.py
CHANGED
|
@@ -30,7 +30,7 @@ PRED_IMG_GT = 1
|
|
| 30 |
DISP_VECT_GT = 2
|
| 31 |
DISP_VECT_LOC_GT = 3
|
| 32 |
|
| 33 |
-
IMG_SIZE =
|
| 34 |
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, IMG_SIZE, 1) # (IMG_SIZE, IMG_SIZE, 1)
|
| 35 |
DISP_MAP_SHAPE = (IMG_SIZE, IMG_SIZE, IMG_SIZE, 3)
|
| 36 |
BATCH_SHAPE = (None, IMG_SIZE, IMG_SIZE, IMG_SIZE, 2) # Expected batch shape by the network
|
|
|
|
| 30 |
DISP_VECT_GT = 2
|
| 31 |
DISP_VECT_LOC_GT = 3
|
| 32 |
|
| 33 |
+
IMG_SIZE = 128 # Assumed a square image
|
| 34 |
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, IMG_SIZE, 1) # (IMG_SIZE, IMG_SIZE, 1)
|
| 35 |
DISP_MAP_SHAPE = (IMG_SIZE, IMG_SIZE, IMG_SIZE, 3)
|
| 36 |
BATCH_SHAPE = (None, IMG_SIZE, IMG_SIZE, IMG_SIZE, 2) # Expected batch shape by the network
|