jpdefrutos commited on
Commit
7b8d670
·
1 Parent(s): 0e7de0a

Updated constants.py to work with the new model downloader functions

Added download functionality to fetch the compiled models from the release files in GitHub (model_dowloader.py)

DeepDeformationMapRegistration/main.py CHANGED
@@ -28,7 +28,11 @@ from DeepDeformationMapRegistration.losses import StructuralSimilarity_simplifie
28
  from DeepDeformationMapRegistration.ms_ssim_tf import MultiScaleStructuralSimilarity
29
  from DeepDeformationMapRegistration.utils.operators import min_max_norm
30
  from DeepDeformationMapRegistration.utils.misc import resize_displacement_map
 
31
 
 
 
 
32
 
33
  MODELS_FILE = {'L': {'BL-N': './models/liver/bl_ncc.h5',
34
  'BL-S': './models/liver/bl_ncc_ssim.h5',
@@ -100,26 +104,30 @@ def pad_images(image_1: nib.Nifti1Image, image_2: nib.Nifti1Image):
100
  joint_image_shape = np.maximum(image_1.shape, image_2.shape)
101
  pad_1 = [[0, p] for p in joint_image_shape - image_1.shape]
102
  pad_2 = [[0, p] for p in joint_image_shape - image_2.shape]
103
- image_1_padded = np.pad(image_1.dataobj, pad_1, mode='edge')
104
- image_2_padded = np.pad(image_2.dataobj, pad_2, mode='edge')
105
 
106
  return image_1_padded, image_2_padded
107
 
108
 
109
  def pad_displacement_map(disp_map: np.ndarray, crop_min: np.ndarray, crop_max: np.ndarray, output_shape: (np.ndarray, list)) -> np.ndarray:
110
- padding = [[crop_min[i], image_shape_or[i] - crop_max[i]] for i in range(3)] + [[0, 0]]
111
- return np.pad(disp_map, padding, mode='constant')
 
 
 
112
 
113
 
114
  def run_livermask(input_image_path, outputdir, filename: str = 'segmentation') -> np.ndarray:
115
- logger.info('Getting parenchyma segmentations...')
 
116
  shutil.copy2(input_image_path, os.path.join(outputdir, f'{filename}.nii.gz'))
117
  livermask_cmd = "{} -m livermask.livermask --input {} --output {}".format(sys.executable,
118
  input_image_path,
119
  os.path.join(outputdir,
120
  f'{filename}.nii.gz'))
121
  subprocess.run(livermask_cmd)
122
- logger.info('done!')
123
  segmentation_path = os.path.join(outputdir, f'{filename}.nii.gz')
124
  return np.asarray(nib.load(segmentation_path).dataobj, dtype=int)
125
 
@@ -132,7 +140,7 @@ def debug_save_image(image: (np.ndarray, nib.Nifti1Image), filename: str, output
132
  max_disp = np.max(disp_map_mod)
133
  disp_map_mod = disp_map_mod - min_disp / (max_disp - min_disp)
134
  disp_map_mod *= scale
135
- logger.debug('Scaled displacement map to [0., 1.] range')
136
  return disp_map_mod
137
 
138
  if debug:
@@ -140,35 +148,41 @@ def debug_save_image(image: (np.ndarray, nib.Nifti1Image), filename: str, output
140
  if image.shape[-1] > 1:
141
  image = disp_map_modulus(image, 1.)
142
  save_nifti(image, os.path.join(outputdir, 'debug', filename+'.nii.gz'), verbose=False)
143
- logger.debug(f'Saved {filename} at {os.path.join(outputdir, filename+".nii.gz")}')
144
 
145
 
146
  def get_roi(image_filepath: str,
147
- anatomy: str,
148
  outputdir: str,
149
  filename_filepath: str = 'segmentation',
150
  segmentation_file: str = None,
151
  debug: bool = False) -> list:
152
  segm = None
153
- if segmentation_file is None and anatomy == 'L':
154
- segm = run_livermask(image_filepath, outputdir, filename_filepath)
155
- logger.info(f'Loaded segmentation using livermask from {os.path.join(outputdir, filename_filepath)}')
 
 
 
 
 
 
156
  elif segmentation_file is not None:
157
  segm = np.asarray(nib.load(segmentation_file).dataobj, dtype=int)
158
- logger.info(f'Loaded fixed segmentation from {segmentation_file}')
159
  else:
160
- logger.warning('No segmentation provided! Using the full volume')
161
  if segm is not None:
162
  segm[segm > 0] = 1
163
  ret_val = regionprops(segm)[0].bbox
164
  debug_save_image(segm, f'img_1_{filename_filepath}', outputdir, debug)
165
  else:
166
  ret_val = [0, 0, 0] + list(nib.load(image_filepath).shape[:3])
167
- logger.debug(f'ROI found at coordinates {ret_val}')
168
  return ret_val
169
 
170
 
171
- if __name__ == '__main__':
172
  parser = argparse.ArgumentParser()
173
  parser.add_argument('-f', '--fixed', type=str, help='Path to fixed image file (NIfTI)')
174
  parser.add_argument('-m', '--moving', type=str, help='Path to moving segmentation image file (NIfTI)', default=None)
@@ -178,23 +192,23 @@ if __name__ == '__main__':
178
  parser.add_argument('-o', '--outputdir', type=str, help='Output directory', default='./Registration_output')
179
  parser.add_argument('-a', '--anatomy', type=str, help='Anatomical structure: liver (L) (Default) or brain (B)',
180
  default='L')
 
181
  parser.add_argument('--gpu', type=int,
182
  help='In case of multi-GPU systems, limits the execution to the defined GPU number',
183
  default=None)
184
  parser.add_argument('--model', type=str, help='Which model to use: BL-N, BL-S, SG-ND, SG-NSD, UW-NSD, UW-NSDH',
185
  default='UW-NSD')
186
  parser.add_argument('--debug', '-d', action='store_true', help='Produce additional debug information', default=False)
187
- parser.add_argument('-y', action='store_true', help='Erase output folder if this has content', default=False)
188
- # parser.add_argument('--brain', type=bool, action='store_true', help='Perform brain MRi registration', default=False)
189
  args = parser.parse_args()
190
 
191
  assert os.path.exists(args.fixed), 'Fixed image not found'
192
  assert os.path.exists(args.moving), 'Moving image not found'
193
- assert args.model in ['BL-N', 'BL-S', 'SG-ND', 'SG-NSD', 'UW-NSD', 'UW-NSDH'], 'Invalid model type'
194
- assert args.anatomy in ['L', 'B'], 'Invalid anatomy option'
195
 
196
  if os.path.exists(args.outputdir) and len(os.listdir(args.outputdir)):
197
- if args.y:
198
  erase = 'y'
199
  else:
200
  erase = input('Output directory is not empty, erase content? (y/n)')
@@ -209,19 +223,20 @@ if __name__ == '__main__':
209
  log_format = '%(asctime)s [%(levelname)s]:\t%(message)s'
210
  logging.basicConfig(filename=os.path.join(args.outputdir, 'log.log'), filemode='w',
211
  format=log_format, datefmt='%Y-%m-%d %H:%M:%S')
212
- logger = logging.getLogger(__name__)
213
  stdout_handler = logging.StreamHandler(sys.stdout)
214
  stdout_handler.setFormatter(logging.Formatter(log_format, datefmt='%Y-%m-%d %H:%M:%S'))
215
- logger.addHandler(stdout_handler)
216
  if isinstance(args.gpu, int):
217
  os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
218
  os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Check availability before running using 'nvidia-smi'
 
219
  if args.debug:
220
- logger.setLevel('DEBUG')
221
- logger.debug('DEBUG MODE ENABLED')
222
 
223
  # Load the file and preprocess it
224
- logger.info('Loading image files')
225
  fixed_image_or = nib.load(args.fixed)
226
  moving_image_or = nib.load(args.moving)
227
  image_shape_or = np.asarray(fixed_image_or.shape)
@@ -232,7 +247,7 @@ if __name__ == '__main__':
232
  debug_save_image(moving_image_or, 'img_0_loaded_moving_image', args.outputdir, args.debug)
233
 
234
  # TF stuff
235
- logger.info('Setting up configuration')
236
  config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
237
  config.gpu_options.allow_growth = True
238
  config.log_device_placement = False ## to log device placement (on which device the operation ran)
@@ -243,10 +258,10 @@ if __name__ == '__main__':
243
 
244
  # Preprocess data
245
  # 1. Run Livermask to get the mask around the liver in both the fixed and moving image
246
- logger.info('Getting ROI')
247
- fixed_segm_bbox = get_roi(args.fixed, args.anatomy, args.outputdir,
248
  'fixed_segmentation', args.fixedsegm, args.debug)
249
- moving_segm_bbox = get_roi(args.moving, args.anatomy, args.outputdir,
250
  'moving_segmentation', args.movingsegm, args.debug)
251
 
252
  crop_min = np.amin(np.vstack([fixed_segm_bbox[:3], moving_segm_bbox[:3]]), axis=0)
@@ -274,7 +289,7 @@ if __name__ == '__main__':
274
  debug_save_image(moving_image, 'img_3_preproc_moving_image', args.outputdir, args.debug)
275
 
276
  # 3. Build the whole graph
277
- logger.info('Building TF graph')
278
  ### METRICS GRAPH ###
279
  fix_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='fix_img')
280
  pred_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='pred_img')
@@ -284,8 +299,8 @@ if __name__ == '__main__':
284
  mse_tf = vxm.losses.MSE().loss(fix_img_ph, pred_img_ph)
285
  ms_ssim_tf = MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric(fix_img_ph, pred_img_ph)
286
 
287
- logger.info(f'Using model: {"Brain" if args.anatomy == "B" else "Liver"} -> {args.model}')
288
- MODEL_FILE = MODELS_FILE[args.anatomy][args.model]
289
 
290
  # try:
291
  # network = tf.keras.models.load_model(MODEL_FILE,
@@ -322,14 +337,16 @@ if __name__ == '__main__':
322
  registration_model = network.get_registration_model()
323
  deb_model = network.apply_transform
324
 
325
- logger.info('Performing registration')
326
  with sess.as_default():
327
  if args.debug:
328
  registration_model.summary(line_length=C.SUMMARY_LINE_LENGTH)
 
329
  time_disp_map_start = time.time()
330
  # disp_map = registration_model.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]])
331
  p, disp_map = network.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]])
332
  time_disp_map_end = time.time()
 
333
  debug_save_image(np.squeeze(disp_map), 'disp_map_0_raw', args.outputdir, args.debug)
334
  debug_save_image(p[0, ...], 'img_4_net_pred_image', args.outputdir, args.debug)
335
  # pred_image = min_max_norm(pred_image)
@@ -337,6 +354,7 @@ if __name__ == '__main__':
337
  # fixed_image_isot = zoom(fixed_image[0, ...], zoom_factors, order=3)[np.newaxis, ...]
338
 
339
  # Up sample the displacement map to the full res
 
340
  trf = np.eye(4)
341
  np.fill_diagonal(trf, 1/zoom_factors)
342
  disp_map = resize_displacement_map(np.squeeze(disp_map), None, trf)
@@ -345,10 +363,15 @@ if __name__ == '__main__':
345
  debug_save_image(np.squeeze(disp_map_or), 'disp_map_2_padded', args.outputdir, args.debug)
346
  disp_map_or = gaussian_filter(disp_map_or, 5)
347
  debug_save_image(np.squeeze(disp_map_or), 'disp_map_3_smoothed', args.outputdir, args.debug)
 
348
 
 
349
  time_pred_img_start = time.time()
350
  pred_image = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([moving_image_or[np.newaxis, ...], disp_map_or[np.newaxis, ...]]).eval()
351
  time_pred_img_end = time.time()
 
 
 
352
  ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
353
  {'fix_img:0': fixed_image_or[np.newaxis, ...], 'pred_img:0': pred_image})
354
  ssim = np.mean(ssim)
@@ -357,25 +380,30 @@ if __name__ == '__main__':
357
 
358
  save_nifti(pred_image, os.path.join(args.outputdir, 'pred_image.nii.gz'))
359
  np.savez_compressed(os.path.join(args.outputdir, 'displacement_map.npz'), disp_map_or)
360
- logger.info('Predicted image (full image) and displacement map saved in: '.format(args.outputdir))
361
- logger.info(f'Displacement map prediction time: {time_disp_map_end - time_disp_map_start} s')
362
- logger.info(f'Predicted image time: {time_pred_img_end - time_pred_img_start} s')
363
 
364
- logger.info('Similarity metrics (Full image)\n------------------')
365
- logger.info('SSIM: {:.03f}'.format(ssim))
366
- logger.info('NCC: {:.03f}'.format(ncc))
367
- logger.info('MSE: {:.03f}'.format(mse))
368
- logger.info('MS SSIM: {:.03f}'.format(ms_ssim))
369
 
370
  ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
371
  {'fix_img:0': fixed_image[np.newaxis, ...], 'pred_img:0': p})
372
  ssim = np.mean(ssim)
373
  ms_ssim = ms_ssim[0]
374
- logger.info('\nSimilarity metrics (ROI)\n------------------')
375
- logger.info('SSIM: {:.03f}'.format(ssim))
376
- logger.info('NCC: {:.03f}'.format(ncc))
377
- logger.info('MSE: {:.03f}'.format(mse))
378
- logger.info('MS SSIM: {:.03f}'.format(ms_ssim))
379
 
380
  del registration_model
381
- logger.info('Done')
 
 
 
 
 
 
28
  from DeepDeformationMapRegistration.ms_ssim_tf import MultiScaleStructuralSimilarity
29
  from DeepDeformationMapRegistration.utils.operators import min_max_norm
30
  from DeepDeformationMapRegistration.utils.misc import resize_displacement_map
31
+ from DeepDeformationMapRegistration.utils.model_downloader import get_models_path
32
 
33
+ from importlib.util import find_spec
34
+
35
+ LOGGER = logging.getLogger(__name__)
36
 
37
  MODELS_FILE = {'L': {'BL-N': './models/liver/bl_ncc.h5',
38
  'BL-S': './models/liver/bl_ncc_ssim.h5',
 
104
  joint_image_shape = np.maximum(image_1.shape, image_2.shape)
105
  pad_1 = [[0, p] for p in joint_image_shape - image_1.shape]
106
  pad_2 = [[0, p] for p in joint_image_shape - image_2.shape]
107
+ image_1_padded = np.pad(image_1.dataobj, pad_1, mode='edge').astype(np.float32)
108
+ image_2_padded = np.pad(image_2.dataobj, pad_2, mode='edge').astype(np.float32)
109
 
110
  return image_1_padded, image_2_padded
111
 
112
 
113
  def pad_displacement_map(disp_map: np.ndarray, crop_min: np.ndarray, crop_max: np.ndarray, output_shape: (np.ndarray, list)) -> np.ndarray:
114
+ ret_val = disp_map
115
+ if np.all([d != i for d, i in zip(disp_map.shape[:3], output_shape)]):
116
+ padding = [[crop_min[i], max(0, output_shape[i] - crop_max[i])] for i in range(3)] + [[0, 0]]
117
+ ret_val = np.pad(disp_map, padding, mode='constant')
118
+ return ret_val
119
 
120
 
121
  def run_livermask(input_image_path, outputdir, filename: str = 'segmentation') -> np.ndarray:
122
+ assert find_spec('livermask'), 'Livermask is not available'
123
+ LOGGER.info('Getting parenchyma segmentations...')
124
  shutil.copy2(input_image_path, os.path.join(outputdir, f'{filename}.nii.gz'))
125
  livermask_cmd = "{} -m livermask.livermask --input {} --output {}".format(sys.executable,
126
  input_image_path,
127
  os.path.join(outputdir,
128
  f'{filename}.nii.gz'))
129
  subprocess.run(livermask_cmd)
130
+ LOGGER.info('done!')
131
  segmentation_path = os.path.join(outputdir, f'{filename}.nii.gz')
132
  return np.asarray(nib.load(segmentation_path).dataobj, dtype=int)
133
 
 
140
  max_disp = np.max(disp_map_mod)
141
  disp_map_mod = disp_map_mod - min_disp / (max_disp - min_disp)
142
  disp_map_mod *= scale
143
+ LOGGER.debug('Scaled displacement map to [0., 1.] range')
144
  return disp_map_mod
145
 
146
  if debug:
 
148
  if image.shape[-1] > 1:
149
  image = disp_map_modulus(image, 1.)
150
  save_nifti(image, os.path.join(outputdir, 'debug', filename+'.nii.gz'), verbose=False)
151
+ LOGGER.debug(f'Saved {filename} at {os.path.join(outputdir, filename + ".nii.gz")}')
152
 
153
 
154
  def get_roi(image_filepath: str,
155
+ compute_segmentation: bool,
156
  outputdir: str,
157
  filename_filepath: str = 'segmentation',
158
  segmentation_file: str = None,
159
  debug: bool = False) -> list:
160
  segm = None
161
+ if segmentation_file is None and compute_segmentation:
162
+ LOGGER.info(f'Computing segmentation using livermask. Only for liver in abdominal CTs')
163
+ try:
164
+ segm = run_livermask(image_filepath, outputdir, filename_filepath)
165
+ LOGGER.info(f'Loaded segmentation using livermask from {os.path.join(outputdir, filename_filepath)}')
166
+ except (AssertionError, FileNotFoundError) as er:
167
+ LOGGER.warning(er)
168
+ LOGGER.warning('No segmentation provided! Using the full volume')
169
+ pass
170
  elif segmentation_file is not None:
171
  segm = np.asarray(nib.load(segmentation_file).dataobj, dtype=int)
172
+ LOGGER.info(f'Loaded fixed segmentation from {segmentation_file}')
173
  else:
174
+ LOGGER.warning('No segmentation provided! Using the full volume')
175
  if segm is not None:
176
  segm[segm > 0] = 1
177
  ret_val = regionprops(segm)[0].bbox
178
  debug_save_image(segm, f'img_1_{filename_filepath}', outputdir, debug)
179
  else:
180
  ret_val = [0, 0, 0] + list(nib.load(image_filepath).shape[:3])
181
+ LOGGER.debug(f'ROI found at coordinates {ret_val}')
182
  return ret_val
183
 
184
 
185
+ def main():
186
  parser = argparse.ArgumentParser()
187
  parser.add_argument('-f', '--fixed', type=str, help='Path to fixed image file (NIfTI)')
188
  parser.add_argument('-m', '--moving', type=str, help='Path to moving segmentation image file (NIfTI)', default=None)
 
192
  parser.add_argument('-o', '--outputdir', type=str, help='Output directory', default='./Registration_output')
193
  parser.add_argument('-a', '--anatomy', type=str, help='Anatomical structure: liver (L) (Default) or brain (B)',
194
  default='L')
195
+ parser.add_argument('-s', '--make-segmentation', action='store_true', help='Try to create a segmentation for liver in CT images', default=False)
196
  parser.add_argument('--gpu', type=int,
197
  help='In case of multi-GPU systems, limits the execution to the defined GPU number',
198
  default=None)
199
  parser.add_argument('--model', type=str, help='Which model to use: BL-N, BL-S, SG-ND, SG-NSD, UW-NSD, UW-NSDH',
200
  default='UW-NSD')
201
  parser.add_argument('--debug', '-d', action='store_true', help='Produce additional debug information', default=False)
202
+ parser.add_argument('-c', '--clear-outputdir', action='store_true', help='Clear output folder if this has content', default=False)
 
203
  args = parser.parse_args()
204
 
205
  assert os.path.exists(args.fixed), 'Fixed image not found'
206
  assert os.path.exists(args.moving), 'Moving image not found'
207
+ assert args.model in C.MODEL_TYPES.keys(), 'Invalid model type'
208
+ assert args.anatomy in C.ANATOMIES.keys(), 'Invalid anatomy option'
209
 
210
  if os.path.exists(args.outputdir) and len(os.listdir(args.outputdir)):
211
+ if args.clear_outputdir:
212
  erase = 'y'
213
  else:
214
  erase = input('Output directory is not empty, erase content? (y/n)')
 
223
  log_format = '%(asctime)s [%(levelname)s]:\t%(message)s'
224
  logging.basicConfig(filename=os.path.join(args.outputdir, 'log.log'), filemode='w',
225
  format=log_format, datefmt='%Y-%m-%d %H:%M:%S')
226
+
227
  stdout_handler = logging.StreamHandler(sys.stdout)
228
  stdout_handler.setFormatter(logging.Formatter(log_format, datefmt='%Y-%m-%d %H:%M:%S'))
229
+ LOGGER.addHandler(stdout_handler)
230
  if isinstance(args.gpu, int):
231
  os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
232
  os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Check availability before running using 'nvidia-smi'
233
+ LOGGER.setLevel('INFO')
234
  if args.debug:
235
+ LOGGER.setLevel('DEBUG')
236
+ LOGGER.debug('DEBUG MODE ENABLED')
237
 
238
  # Load the file and preprocess it
239
+ LOGGER.info('Loading image files')
240
  fixed_image_or = nib.load(args.fixed)
241
  moving_image_or = nib.load(args.moving)
242
  image_shape_or = np.asarray(fixed_image_or.shape)
 
247
  debug_save_image(moving_image_or, 'img_0_loaded_moving_image', args.outputdir, args.debug)
248
 
249
  # TF stuff
250
+ LOGGER.info('Setting up configuration')
251
  config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
252
  config.gpu_options.allow_growth = True
253
  config.log_device_placement = False ## to log device placement (on which device the operation ran)
 
258
 
259
  # Preprocess data
260
  # 1. Run Livermask to get the mask around the liver in both the fixed and moving image
261
+ LOGGER.info('Getting ROI')
262
+ fixed_segm_bbox = get_roi(args.fixed, args.make_segmentation, args.outputdir,
263
  'fixed_segmentation', args.fixedsegm, args.debug)
264
+ moving_segm_bbox = get_roi(args.moving, args.make_segmentation, args.outputdir,
265
  'moving_segmentation', args.movingsegm, args.debug)
266
 
267
  crop_min = np.amin(np.vstack([fixed_segm_bbox[:3], moving_segm_bbox[:3]]), axis=0)
 
289
  debug_save_image(moving_image, 'img_3_preproc_moving_image', args.outputdir, args.debug)
290
 
291
  # 3. Build the whole graph
292
+ LOGGER.info('Building TF graph')
293
  ### METRICS GRAPH ###
294
  fix_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='fix_img')
295
  pred_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='pred_img')
 
299
  mse_tf = vxm.losses.MSE().loss(fix_img_ph, pred_img_ph)
300
  ms_ssim_tf = MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric(fix_img_ph, pred_img_ph)
301
 
302
+ LOGGER.info(f'Using model: {"Brain" if args.anatomy == "B" else "Liver"} -> {args.model}')
303
+ MODEL_FILE = get_models_path(args.anatomy, args.model, os.getcwd()) # MODELS_FILE[args.anatomy][args.model]
304
 
305
  # try:
306
  # network = tf.keras.models.load_model(MODEL_FILE,
 
337
  registration_model = network.get_registration_model()
338
  deb_model = network.apply_transform
339
 
340
+ LOGGER.info('Computing registration')
341
  with sess.as_default():
342
  if args.debug:
343
  registration_model.summary(line_length=C.SUMMARY_LINE_LENGTH)
344
+ LOGGER.info('Computing displacement map...')
345
  time_disp_map_start = time.time()
346
  # disp_map = registration_model.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]])
347
  p, disp_map = network.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]])
348
  time_disp_map_end = time.time()
349
+ LOGGER.info('\t... done')
350
  debug_save_image(np.squeeze(disp_map), 'disp_map_0_raw', args.outputdir, args.debug)
351
  debug_save_image(p[0, ...], 'img_4_net_pred_image', args.outputdir, args.debug)
352
  # pred_image = min_max_norm(pred_image)
 
354
  # fixed_image_isot = zoom(fixed_image[0, ...], zoom_factors, order=3)[np.newaxis, ...]
355
 
356
  # Up sample the displacement map to the full res
357
+ LOGGER.info('Scaling displacement map...')
358
  trf = np.eye(4)
359
  np.fill_diagonal(trf, 1/zoom_factors)
360
  disp_map = resize_displacement_map(np.squeeze(disp_map), None, trf)
 
363
  debug_save_image(np.squeeze(disp_map_or), 'disp_map_2_padded', args.outputdir, args.debug)
364
  disp_map_or = gaussian_filter(disp_map_or, 5)
365
  debug_save_image(np.squeeze(disp_map_or), 'disp_map_3_smoothed', args.outputdir, args.debug)
366
+ LOGGER.info('\t... done')
367
 
368
+ LOGGER.info('Applying displacement map...')
369
  time_pred_img_start = time.time()
370
  pred_image = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([moving_image_or[np.newaxis, ...], disp_map_or[np.newaxis, ...]]).eval()
371
  time_pred_img_end = time.time()
372
+ LOGGER.info('\t... done')
373
+
374
+ LOGGER.info('Computing metrics...')
375
  ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
376
  {'fix_img:0': fixed_image_or[np.newaxis, ...], 'pred_img:0': pred_image})
377
  ssim = np.mean(ssim)
 
380
 
381
  save_nifti(pred_image, os.path.join(args.outputdir, 'pred_image.nii.gz'))
382
  np.savez_compressed(os.path.join(args.outputdir, 'displacement_map.npz'), disp_map_or)
383
+ LOGGER.info('Predicted image (full image) and displacement map saved in: '.format(args.outputdir))
384
+ LOGGER.info(f'Displacement map prediction time: {time_disp_map_end - time_disp_map_start} s')
385
+ LOGGER.info(f'Predicted image time: {time_pred_img_end - time_pred_img_start} s')
386
 
387
+ LOGGER.info('Similarity metrics (Full image)\n------------------')
388
+ LOGGER.info('SSIM: {:.03f}'.format(ssim))
389
+ LOGGER.info('NCC: {:.03f}'.format(ncc))
390
+ LOGGER.info('MSE: {:.03f}'.format(mse))
391
+ LOGGER.info('MS SSIM: {:.03f}'.format(ms_ssim))
392
 
393
  ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
394
  {'fix_img:0': fixed_image[np.newaxis, ...], 'pred_img:0': p})
395
  ssim = np.mean(ssim)
396
  ms_ssim = ms_ssim[0]
397
+ LOGGER.info('\nSimilarity metrics (ROI)\n------------------')
398
+ LOGGER.info('SSIM: {:.03f}'.format(ssim))
399
+ LOGGER.info('NCC: {:.03f}'.format(ncc))
400
+ LOGGER.info('MSE: {:.03f}'.format(mse))
401
+ LOGGER.info('MS SSIM: {:.03f}'.format(ms_ssim))
402
 
403
  del registration_model
404
+ LOGGER.info('Done')
405
+ exit(0)
406
+
407
+
408
+ if __name__ == '__main__':
409
+ main()
DeepDeformationMapRegistration/utils/constants.py CHANGED
@@ -523,3 +523,11 @@ GAMMA_AUGMENTATION = True
523
  BRIGHTNESS_AUGMENTATION = False
524
  NUM_CONTROL_PTS_AUG = 10
525
  NUM_AUGMENTATIONS = 1
 
 
 
 
 
 
 
 
 
523
  BRIGHTNESS_AUGMENTATION = False
524
  NUM_CONTROL_PTS_AUG = 10
525
  NUM_AUGMENTATIONS = 1
526
+
527
+ ANATOMIES = {'L': 'liver', 'B': 'brain'}
528
+ MODEL_TYPES = {'BL-N': 'bl_ncc',
529
+ 'BL-S': 'bl_ncc_ssim',
530
+ 'SG-ND': 'sg_ncc_dsc',
531
+ 'SG-NSD': 'sg_ncc_ssim_dsc',
532
+ 'UW-NSD': 'uw_ncc_ssim_dsc',
533
+ 'UW-NSDH': 'uw_ncc_ssim_dsc_hd'}
DeepDeformationMapRegistration/utils/model_downloader.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ from datetime import datetime
4
+ from email.utils import parsedate_to_datetime, formatdate
5
+ from DeepDeformationMapRegistration.utils.constants import ANATOMIES, MODEL_TYPES
6
+
7
+
8
+ # taken from: https://lenon.dev/blog/downloading-and-caching-large-files-using-python/
9
+ def download(url, destination_file):
10
+ headers = {}
11
+
12
+ if os.path.exists(destination_file):
13
+ mtime = os.path.getmtime(destination_file)
14
+ headers["if-modified-since"] = formatdate(mtime, usegmt=True)
15
+
16
+ response = requests.get(url, headers=headers, stream=True)
17
+ response.raise_for_status()
18
+
19
+ if response.status_code == requests.codes.not_modified:
20
+ return
21
+
22
+ if response.status_code == requests.codes.ok:
23
+ with open(destination_file, "wb") as f:
24
+ for chunk in response.iter_content(chunk_size=1048576):
25
+ f.write(chunk)
26
+
27
+ last_modified = response.headers.get("last-modified")
28
+ if last_modified:
29
+ new_mtime = parsedate_to_datetime(last_modified).timestamp()
30
+ os.utime(destination_file, times=(datetime.now().timestamp(), new_mtime))
31
+
32
+
33
+ def get_models_path(anatomy: str, model_type: str, output_root_dir: str):
34
+ assert anatomy in ANATOMIES.keys(), 'Invalid anatomy'
35
+ assert model_type in MODEL_TYPES.keys(), 'Invalid model type'
36
+ anatomy = ANATOMIES[anatomy]
37
+ model_type = MODEL_TYPES[model_type]
38
+ url = 'https://github.com/jpdefrutos/DDMR/releases/download/trained-models/' + anatomy + '/' + model_type + '.h5'
39
+ file_path = os.path.join(output_root_dir, 'models', anatomy, model_type + '.h5')
40
+ if not os.path.exists(file_path):
41
+ os.makedirs(os.path.split(file_path)[0], exist_ok=True)
42
+ download(url, file_path)
43
+ return file_path
setup.py CHANGED
@@ -1,14 +1,20 @@
1
  from setuptools import find_packages, setup
2
  import os
3
 
4
- entry_points = {'console_script':['DeepDeformationMapRegistration=DeepDeformationMapRegistration.main:main']}
 
 
 
 
5
 
6
  setup(
7
  name='DeepDeformationMapRegistration',
8
  py_modules=['DeepDeformationMapRegistration'],
9
- packages=find_packages(include=['DeepDeformationMapRegistration', 'DeepDeformationMapRegistration.*']),
 
10
  version='1.0',
11
  description='Deep-registration training toolkit',
 
12
  author='Javier Pérez de Frutos',
13
  classifiers=[
14
  'Programming language :: Python :: 3',
@@ -17,10 +23,22 @@ setup(
17
  ],
18
  python_requires='>=3.6',
19
  install_requires=[
 
 
 
 
 
 
 
20
  'tensorflow-gpu==1.14.0',
 
 
 
21
  'tensorboard==1.14.0',
22
  'nibabel==3.2.1',
23
  'numpy==1.18.5',
24
- 'livermask'
25
- ]
 
 
26
  )
 
1
  from setuptools import find_packages, setup
2
  import os
3
 
4
+ # with open("README.md", "r", encoding="utf-8") as f:
5
+ # long_description = f.read()
6
+
7
+ with open("requirements.txt", "r") as f:
8
+ reqs = [line.strip('\n') for line in f.readlines()]
9
 
10
  setup(
11
  name='DeepDeformationMapRegistration',
12
  py_modules=['DeepDeformationMapRegistration'],
13
+ packages=find_packages(include=['DeepDeformationMapRegistration', 'DeepDeformationMapRegistration.*'],
14
+ exclude=['test_images', 'test_images.*']),
15
  version='1.0',
16
  description='Deep-registration training toolkit',
17
+ # long_description=long_description,
18
  author='Javier Pérez de Frutos',
19
  classifiers=[
20
  'Programming language :: Python :: 3',
 
23
  ],
24
  python_requires='>=3.6',
25
  install_requires=[
26
+ 'fastrlock>=0.3', # required by cupy-cuda110
27
+ 'testresources', # required by launchpadlib
28
+ 'scipy',
29
+ 'scikit-image',
30
+ 'simpleITK',
31
+ 'voxelmorph==0.1',
32
+ 'pystrum==0.1',
33
  'tensorflow-gpu==1.14.0',
34
+ 'tensorflow-addons',
35
+ 'tensorflow-datasets',
36
+ 'tensorflow-metadata',
37
  'tensorboard==1.14.0',
38
  'nibabel==3.2.1',
39
  'numpy==1.18.5',
40
+ ],
41
+ entry_points={
42
+ 'console_scripts': ['ddmr=DeepDeformationMapRegistration.main:main']
43
+ }
44
  )