Spaces:
Runtime error
Runtime error
# MIT License | |
# (see original notice and terms) | |
import os | |
import types | |
import zipfile | |
import importlib | |
from typing import * | |
import gradio as gr | |
import numpy as np | |
import torch | |
import tempfile | |
# ---- Force CPU-only environment globally ---- | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # hide GPUs from torch | |
os.environ.setdefault("ATTN_BACKEND", "sdpa") # avoid xformers path | |
os.environ.setdefault("SPCONV_ALGO", "native") # safe sparseconv algo | |
# --------------------------------------------- | |
# --------------------------------------------------------------------------- | |
# Ensure bundled hi3dgen sources are available (extracted from hi3dgen.zip) | |
# --------------------------------------------------------------------------- | |
def _ensure_hi3dgen_available(): | |
pkg_name = 'hi3dgen' | |
here = os.path.dirname(__file__) | |
pkg_dir = os.path.join(here, pkg_name) | |
if os.path.isdir(pkg_dir): | |
return | |
archive_path = os.path.join(here, f"{pkg_name}.zip") | |
if not os.path.isfile(archive_path): | |
raise FileNotFoundError( | |
f"Required archive {archive_path} is missing. Upload hi3dgen.zip next to app.py." | |
) | |
try: | |
with zipfile.ZipFile(archive_path, 'r') as zf: | |
zf.extractall(here) | |
except Exception as e: | |
raise RuntimeError(f"Failed to extract {archive_path}: {e}") | |
_ensure_hi3dgen_available() | |
# --------------------------------------------------------------------------- | |
# xformers stub (CPU-friendly fallback for xformers.ops.memory_efficient_attention) | |
# --------------------------------------------------------------------------- | |
def _ensure_xformers_stub(): | |
import sys | |
if 'xformers.ops' in sys.modules: | |
return | |
import torch.nn.functional as F | |
xf_mod = types.ModuleType('xformers') | |
ops_mod = types.ModuleType('xformers.ops') | |
def memory_efficient_attention(query, key, value, attn_bias=None): | |
# SDPA fallback | |
return F.scaled_dot_product_attention(query, key, value, attn_bias) | |
ops_mod.memory_efficient_attention = memory_efficient_attention | |
xf_mod.ops = ops_mod | |
sys.modules['xformers'] = xf_mod | |
sys.modules['xformers.ops'] = ops_mod | |
_ensure_xformers_stub() | |
# --------------------------------------------------------------------------- | |
# Patch CUDA hotspots to CPU **BEFORE** importing the pipeline | |
# --------------------------------------------------------------------------- | |
print("[PATCH] Applying CPU monkey-patches to hi3dgen") | |
# 1) utils_cube.construct_dense_grid(..., device=...) -> force CPU | |
uc = importlib.import_module("hi3dgen.representations.mesh.utils_cube") | |
if not hasattr(uc, "_CPU_PATCHED"): | |
_uc_orig_construct_dense_grid = uc.construct_dense_grid | |
def _construct_dense_grid_cpu(res, device=None): | |
# ignore any requested device, always CPU | |
return _uc_orig_construct_dense_grid(res, device="cpu") | |
uc.construct_dense_grid = _construct_dense_grid_cpu | |
uc._CPU_PATCHED = True | |
print("[PATCH] utils_cube.construct_dense_grid -> CPU") | |
# 2) cube2mesh.EnhancedMarchingCubes default device -> force CPU (flexible) | |
cm = importlib.import_module("hi3dgen.representations.mesh.cube2mesh") | |
M = cm.EnhancedMarchingCubes | |
if not hasattr(M, "_CPU_PATCHED"): | |
_orig_init = M.__init__ | |
def _init_cpu(self, *args, **kwargs): | |
# ensure device ends up on CPU regardless of how it's passed | |
if "device" in kwargs: | |
kwargs["device"] = torch.device("cpu") | |
else: | |
kwargs.setdefault("device", torch.device("cpu")) | |
return _orig_init(self, *args, **kwargs) | |
M.__init__ = _init_cpu | |
M._CPU_PATCHED = True | |
print("[PATCH] cube2mesh.EnhancedMarchingCubes.__init__ -> CPU (flex)") | |
# 3) IMPORTANT: cube2mesh does "from .utils_cube import construct_dense_grid" | |
# so we must override the BOUND symbol inside cube2mesh as well. | |
if getattr(cm, "construct_dense_grid", None) is not _construct_dense_grid_cpu: | |
cm.construct_dense_grid = _construct_dense_grid_cpu | |
print("[PATCH] cube2mesh.construct_dense_grid (bound name) -> CPU") | |
# 4) Belt & suspenders: coerce torch.arange(device='cuda') to CPU if anything slips through | |
if not hasattr(torch, "_ARANGE_CPU_PATCHED"): | |
_orig_arange = torch.arange | |
def _arange_cpu(*args, **kwargs): | |
dev = kwargs.get("device", None) | |
if dev is not None and str(dev).startswith("cuda"): | |
kwargs["device"] = "cpu" | |
return _orig_arange(*args, **kwargs) | |
torch.arange = _arange_cpu | |
torch._ARANGE_CPU_PATCHED = True | |
print("[PATCH] torch.arange(device='cuda') -> CPU") | |
# --------------------------------------------------------------------------- | |
# Now import pipeline (AFTER patches so bound names are already overridden) | |
# --------------------------------------------------------------------------- | |
from hi3dgen.pipelines import Hi3DGenPipeline | |
import trimesh | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
WEIGHTS_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'weights') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
os.makedirs(WEIGHTS_DIR, exist_ok=True) | |
# --------------------------------------------------------------------------- | |
# Weights caching | |
# --------------------------------------------------------------------------- | |
def cache_weights(weights_dir: str) -> dict: | |
from huggingface_hub import snapshot_download | |
os.makedirs(weights_dir, exist_ok=True) | |
model_ids = [ | |
"Stable-X/trellis-normal-v0-1", | |
"Stable-X/yoso-normal-v1-8-1", | |
"ZhengPeng7/BiRefNet", | |
] | |
cached_paths = {} | |
for model_id in model_ids: | |
print(f"Caching weights for: {model_id}") | |
local_path = os.path.join(weights_dir, model_id.split("/")[-1]) | |
if os.path.exists(local_path): | |
print(f"Already cached at: {local_path}") | |
cached_paths[model_id] = local_path | |
continue | |
print(f"Downloading and caching model: {model_id}") | |
local_path = snapshot_download( | |
repo_id=model_id, | |
local_dir=os.path.join(weights_dir, model_id.split("/")[-1]), | |
force_download=False | |
) | |
cached_paths[model_id] = local_path | |
print(f"Cached at: {local_path}") | |
return cached_paths | |
# --------------------------------------------------------------------------- | |
# Pre/Post processing and generation | |
# --------------------------------------------------------------------------- | |
def preprocess_mesh(mesh_prompt): | |
print("Processing mesh") | |
trimesh_mesh = trimesh.load_mesh(mesh_prompt) | |
out_path = mesh_prompt + '.glb' | |
trimesh_mesh.export(out_path) | |
return out_path | |
def preprocess_image(image): | |
if image is None: | |
return None | |
return hi3dgen_pipeline.preprocess_image(image, resolution=1024) | |
def generate_3d( | |
image, | |
seed: int = -1, | |
ss_guidance_strength: float = 3, | |
ss_sampling_steps: int = 50, | |
slat_guidance_strength: float = 3, | |
slat_sampling_steps: int = 6, | |
): | |
if image is None: | |
return None, None, None | |
if seed == -1: | |
seed = np.random.randint(0, MAX_SEED) | |
image = hi3dgen_pipeline.preprocess_image(image, resolution=1024) | |
normal_image = normal_predictor( | |
image, | |
resolution=768, | |
match_input_resolution=True, | |
data_type='object' | |
) | |
outputs = hi3dgen_pipeline.run( | |
normal_image, | |
seed=seed, | |
formats=["mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
generated_mesh = outputs['mesh'][0] | |
import datetime | |
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S") | |
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True) | |
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb" | |
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True) | |
trimesh_mesh.export(mesh_path) | |
return normal_image, mesh_path, mesh_path | |
def convert_mesh(mesh_path, export_format): | |
if not mesh_path: | |
return None | |
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False) | |
temp_file_path = temp_file.name | |
mesh = trimesh.load_mesh(mesh_path) | |
mesh.export(temp_file_path) | |
return temp_file_path | |
# --------------------------------------------------------------------------- | |
# UI | |
# --------------------------------------------------------------------------- | |
with gr.Blocks(css="footer {visibility: hidden}") as demo: | |
gr.Markdown( | |
""" | |
<h1 style='text-align: center;'>Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging</h1> | |
<p style='text-align: center;'> | |
<strong>V0.1, Introduced By | |
<a href="https://gaplab.cuhk.edu.cn/" target="_blank">GAP Lab</a> (CUHKSZ) and | |
<a href="https://www.nvsgames.cn/" target="_blank">Game-AIGC Team</a> (ByteDance)</strong> | |
</p> | |
""" | |
) | |
with gr.Row(): | |
gr.Markdown(""" | |
<p align="center"> | |
<a title="Website" href="https://stable-x.github.io/Hi3DGen/" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg"> | |
</a> | |
<a title="arXiv" href="https://stable-x.github.io/Hi3DGen/hi3dgen_paper.pdf" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg"> | |
</a> | |
<a title="Github" href="https://github.com/Stable-X/Hi3DGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://img.shields.io/github/stars/Stable-X/Hi3DGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars"> | |
</a> | |
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social"> | |
</a> | |
</p> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Tabs(): | |
with gr.Tab("Single Image"): | |
with gr.Row(): | |
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil") | |
normal_output = gr.Image(label="Normal Bridge", image_mode="RGBA", type="pil") | |
with gr.Tab("Multiple Images"): | |
gr.Markdown( | |
"<div style='text-align: center; padding: 40px; font-size: 24px;'>Multiple Images functionality is coming soon!</div>" | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider(-1, MAX_SEED, label="Seed", value=0, step=1) | |
gr.Markdown("#### Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=50, step=1) | |
gr.Markdown("#### Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=6, step=1) | |
with gr.Group(): | |
with gr.Row(): | |
gen_shape_btn = gr.Button("Generate Shape", size="lg", variant="primary") | |
with gr.Column(scale=1): | |
with gr.Column(): | |
model_output = gr.Model3D(label="3D Model Preview (Each model is ~40MB; may take ~1 min to load)") | |
with gr.Column(): | |
export_format = gr.Dropdown( | |
choices=["obj", "glb", "ply", "stl"], | |
value="glb", | |
label="File Format" | |
) | |
download_btn = gr.DownloadButton(label="Export Mesh", interactive=False) | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[image_prompt] | |
) | |
gen_shape_btn.click( | |
generate_3d, | |
inputs=[ | |
image_prompt, seed, | |
ss_guidance_strength, ss_sampling_steps, | |
slat_guidance_strength, slat_sampling_steps | |
], | |
outputs=[normal_output, model_output, download_btn] | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_btn], | |
) | |
def update_download_button(mesh_path, export_format): | |
if not mesh_path: | |
return gr.File.update(value=None, interactive=False) | |
download_path = convert_mesh(mesh_path, export_format) | |
return download_path | |
export_format.change( | |
update_download_button, | |
inputs=[model_output, export_format], | |
outputs=[download_btn] | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_btn], | |
) | |
examples = None | |
gr.Markdown( | |
""" | |
**Acknowledgments**: Hi3DGen is built on the shoulders of giants. We would like to express our gratitude to the open-source research community and the developers of these pioneering projects: | |
- **3D Modeling:** Finetuned from the SOTA open-source 3D foundation model [Trellis]. | |
- **Normal Estimation:** Builds on StableNormal and GenPercept. | |
""" | |
) | |
# --------------------------------------------------------------------------- | |
# Entry | |
# --------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
# Cache model weights locally | |
cache_weights(WEIGHTS_DIR) | |
# Load pipeline on CPU | |
hi3dgen_pipeline = Hi3DGenPipeline.from_pretrained("weights/trellis-normal-v0-1") | |
try: | |
hi3dgen_pipeline.to("cpu") | |
except Exception: | |
pass # some pipelines may not implement .to | |
# Initialize normal predictor (CPU) | |
try: | |
normal_predictor = torch.hub.load( | |
os.path.join(torch.hub.get_dir(), 'hugoycj_StableNormal_main'), | |
"StableNormal_turbo", | |
yoso_version='yoso-normal-v1-8-1', | |
source='local', | |
local_cache_dir='./weights', | |
pretrained=True | |
) | |
except Exception: | |
normal_predictor = torch.hub.load( | |
"hugoycj/StableNormal", | |
"StableNormal_turbo", | |
trust_repo=True, | |
yoso_version='yoso-normal-v1-8-1', | |
local_cache_dir='./weights' | |
) | |
try: | |
normal_predictor.to("cpu") | |
except Exception: | |
pass | |
# Launch the Gradio app | |
demo.launch(share=False, server_name="0.0.0.0") | |