anirudh97's picture
final_app
17b1c77
import os
import torch
import gradio as gr
from PIL import Image
from diffusers import StableDiffusionPipeline, DiffusionPipeline
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from tqdm.auto import tqdm
import torchvision.transforms as T
import torch.nn.functional as F
import gc
import signal
import time
import traceback
# Configure constants - optimized for CPU
HEIGHT, WIDTH = 384, 384 # Smaller images use less memory
GUIDANCE_SCALE = 7.5
LOSS_SCALE = 200
NUM_INFERENCE_STEPS = 30 # Reduced from 50
BATCH_SIZE = 1
DEFAULT_PROMPT = "A deadly witcher slinging a sword with a lion medallion in his neck, casting a fire spell from his hand in a snowy forest"
# Define the device
TORCH_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
print(f"Using device: {TORCH_DEVICE}")
# Initialize the elastic transformer
elastic_transformer = T.ElasticTransform(alpha=550.0, sigma=5.0)
# Timeout handler for CPU processing
def timeout_handler(signum, frame):
raise TimeoutError("Image generation took too long")
# Load the model
def load_model():
try:
# Initialize signal handler only on Unix-like systems
if TORCH_DEVICE == "cpu" and hasattr(signal, 'SIGALRM'):
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(2100) # 15 minutes timeout for model loading
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16 if TORCH_DEVICE == "cuda" else torch.float32,
safety_checker=None, # Disable safety checker for memory
low_cpu_mem_usage=True # Enable memory optimization
).to(TORCH_DEVICE)
# Load textual inversion for all devices including CPU
try:
# Load one at a time with memory cleanup between each
concepts = [
"sd-concepts-library/rimworld-art-style",
"sd-concepts-library/hk-goldenlantern",
"sd-concepts-library/phoenix-01",
"sd-concepts-library/fractal-flame",
"sd-concepts-library/scarlet-witch"
]
for concept in concepts:
try:
print(f"Loading textual inversion concept: {concept}")
pipe.load_textual_inversion(concept, mean_resizing=False)
# Clear memory after loading each concept
if TORCH_DEVICE == "cpu":
gc.collect()
except Exception as e:
print(f"Warning: Could not load textual inversion concept {concept}: {e}")
except Exception as e:
print(f"Warning: Could not load textual inversion concepts: {e}")
# Clear the alarm if set
if TORCH_DEVICE == "cpu" and hasattr(signal, 'SIGALRM'):
signal.alarm(0)
return pipe
except Exception as e:
# Clear the alarm if set
if TORCH_DEVICE == "cpu" and hasattr(signal, 'SIGALRM'):
signal.alarm(0)
print(f"Error loading model: {e}")
traceback.print_exc()
raise
# Helper functions
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def image_loss(images, loss_type):
if loss_type == 'blue':
# blue loss
error = torch.abs(images[:,2] - 0.9).mean()
elif loss_type == 'elastic':
# elastic loss
transformed_imgs = elastic_transformer(images)
error = torch.abs(transformed_imgs - images).mean()
elif loss_type == 'symmetry':
flipped_image = torch.flip(images, [3])
error = F.mse_loss(images, flipped_image)
elif loss_type == 'saturation':
# saturation loss
transformed_imgs = T.functional.adjust_saturation(images, saturation_factor=10)
error = torch.abs(transformed_imgs - images).mean()
else:
print("Error. Loss not defined")
error = torch.tensor(0.0)
return error
def latents_to_pil(latents, pipe):
# batch of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = pipe.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def generate_image(pipe, seed_no, prompts, loss_type, loss_apply=False, progress=gr.Progress()):
try:
# Set timeout for CPU
if TORCH_DEVICE == "cpu":
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(600) # 10 minute timeout
# Initialization and Setup
generator = torch.manual_seed(seed_no)
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000
)
scheduler.set_timesteps(NUM_INFERENCE_STEPS)
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
# Text Processing
text_input = pipe.tokenizer(
prompts,
padding='max_length',
max_length=pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
)
input_ids = text_input.input_ids.to(TORCH_DEVICE)
# Convert text inputs to embeddings
with torch.no_grad():
text_embeddings = pipe.text_encoder(input_ids)[0]
# Handle padding and truncation of text inputs
max_length = text_input.input_ids.shape[-1]
uncond_input = pipe.tokenizer(
[""] * BATCH_SIZE,
padding="max_length",
max_length=max_length,
return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(TORCH_DEVICE))[0]
# Concatenate unconditioned and text embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Create random initial latents
latents = torch.randn(
(BATCH_SIZE, pipe.unet.config.in_channels, HEIGHT // 8, WIDTH // 8),
generator=generator,
)
# Move latents to device and apply noise scaling
if TORCH_DEVICE == "cuda":
latents = latents.to(torch.float16)
latents = latents.to(TORCH_DEVICE)
latents = latents * scheduler.init_noise_sigma
# Diffusion Process
timesteps = scheduler.timesteps
progress(0, desc="Generating")
# Fixed loop - separate the progress tracking from the enumeration
for i in range(len(timesteps)):
progress((i + 1) / len(timesteps), desc=f"Diffusion step {i+1}/{len(timesteps)}")
t = timesteps[i]
# Process the latent model input
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings
)["sample"]
# Apply noise prediction
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_text - noise_pred_uncond)
# Apply loss if requested
if loss_apply and i % 5 == 0 and loss_type != "N/A":
latents = latents.detach().requires_grad_()
latents_x0 = latents - sigma * noise_pred
# Use VAE to decode the image
denoised_images = pipe.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
# Apply loss
loss = image_loss(denoised_images, loss_type) * LOSS_SCALE
print(f"Step {i}, Loss: {loss.item()}")
# Compute gradients for optimization
cond_grad = torch.autograd.grad(loss, latents)[0]
latents = latents.detach() - cond_grad * sigma**2
# Update latents using the scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
# Garbage collect every 5 steps if on CPU
if TORCH_DEVICE == "cpu" and i % 5 == 0:
gc.collect()
# Clear the alarm if set
if TORCH_DEVICE == "cpu":
signal.alarm(0)
return latents
except Exception as e:
print(f"Error in generate_image: {e}")
traceback.print_exc()
# Return empty latents as fallback
return torch.zeros(
(BATCH_SIZE, pipe.unet.config.in_channels, HEIGHT // 8, WIDTH // 8),
device=TORCH_DEVICE
)
def generate_images(prompt, loss_type, apply_loss, seeds, pipe, progress=gr.Progress()):
try:
images_list = []
# Convert comma-separated string to list and clean
seeds = [int(seed.strip()) for seed in seeds.split(',') if seed.strip()]
if not seeds:
seeds = [1000] # Default seed if none provided
# Process one seed at a time to save memory
for i, seed_no in enumerate(seeds):
progress((i / len(seeds)) * 0.1, desc=f"Starting seed {seed_no}")
# Clear memory
if TORCH_DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
try:
# Generate image
prompts = [prompt]
latents = generate_image(pipe, seed_no, prompts, loss_type, loss_apply=apply_loss, progress=progress)
pil_images = latents_to_pil(latents, pipe)
images_list.extend(pil_images)
except Exception as e:
print(f"Error generating image with seed {seed_no}: {e}")
# Create an error image
error_img = Image.new('RGB', (HEIGHT, WIDTH), color=(255, 0, 0))
images_list.append(error_img)
# Force garbage collection
gc.collect()
# Create image grid
if len(images_list) > 1:
result = image_grid(images_list, 1, len(images_list))
return result
else:
return images_list[0]
except Exception as e:
print(f"Error in generate_images: {e}")
traceback.print_exc()
# Create an error image
error_img = Image.new('RGB', (WIDTH, HEIGHT), color=(255, 0, 0))
return error_img
# Gradio Interface
def create_interface():
with gr.Blocks(title="Stable Diffusion Text Inversion with Loss Functions") as app:
gr.Markdown("""
# Stable Diffusion Text Inversion with Loss Functions
Generate images using Stable Diffusion with various loss functions to guide the diffusion process.
""")
if TORCH_DEVICE == "cpu":
gr.Markdown("""
⚠️ **Running on CPU**: Generation will be slow and memory-intensive.
Each image may take several minutes to generate.
""")
pipe = None # Initialize to None to avoid loading during interface creation
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
value=DEFAULT_PROMPT,
lines=3
)
loss_type = gr.Radio(
label="Loss Type",
choices=["N/A", "blue", "elastic", "symmetry", "saturation"],
value="N/A"
)
apply_loss = gr.Checkbox(
label="Apply Loss Function",
value=False
)
if TORCH_DEVICE == "cpu":
seeds = gr.Textbox(
label="Seeds (comma-separated) - Use fewer seeds for CPU",
value="1000",
lines=1
)
else:
seeds = gr.Textbox(
label="Seeds (comma-separated)",
value="3000,2000,1000",
lines=1
)
# Load model button
load_model_btn = gr.Button("Load Model")
model_status = gr.Textbox(label="Model Status", value="Model not loaded", interactive=False)
generate_btn = gr.Button("Generate Images", interactive=False)
with gr.Column():
output_image = gr.Image(label="Generated Image")
def load_model_fn():
nonlocal pipe
try:
pipe = load_model()
return "Model loaded successfully", True
except Exception as e:
return f"Error loading model: {str(e)}", False
load_model_btn.click(
fn=load_model_fn,
inputs=[],
outputs=[model_status, generate_btn]
)
generate_btn.click(
fn=lambda p, lt, al, s, prog: generate_images(p, lt, al, s, pipe, prog),
inputs=[prompt, loss_type, apply_loss, seeds],
outputs=output_image
)
gr.Markdown("""
## About the Loss Functions
- **Blue**: Encourages more blue tones in the image
- **Elastic**: Creates distortion effects by minimizing differences with elastically transformed versions
- **Symmetry**: Encourages symmetrical images by minimizing differences with horizontally flipped versions
- **Saturation**: Increases color saturation in the image
Set "N/A" and uncheck "Apply Loss Function" for normal image generation.
""")
if TORCH_DEVICE == "cpu":
gr.Markdown("""
## CPU Mode Tips
- Use smaller prompts
- Process one seed at a time
- Be patient, generation can take 5-10 minutes per image
- If you encounter memory errors, try restarting the app and using even smaller dimensions
""")
return app
if __name__ == "__main__":
# Create and launch the interface
app = create_interface()
app.launch()