Spaces:
Running
on
Zero
Running
on
Zero
# modified from https://github.com/QwenLM/Qwen2.5-VL/blob/main/qwen-vl-utils/src/qwen_vl_utils/vision_process.py | |
from __future__ import annotations | |
import base64 | |
import copy | |
import logging | |
import math | |
import os | |
import sys | |
import time | |
import warnings | |
from functools import lru_cache | |
from io import BytesIO | |
from typing import Optional | |
import requests | |
import torch | |
import torchvision | |
from packaging import version | |
from PIL import Image | |
from torchvision import io, transforms | |
from torchvision.transforms import InterpolationMode | |
logger = logging.getLogger(__name__) | |
IMAGE_FACTOR = 28 | |
MIN_PIXELS = 4 * 28 * 28 | |
MAX_PIXELS = 16384 * 28 * 28 | |
MAX_RATIO = 200 | |
VIDEO_MIN_PIXELS = 128 * 28 * 28 | |
VIDEO_MAX_PIXELS = 768 * 28 * 28 | |
FRAME_FACTOR = 2 | |
FPS = 2.0 | |
FPS_MIN_FRAMES = 4 | |
FPS_MAX_FRAMES = 768 | |
# Set the maximum number of video token inputs. | |
# Here, 128K represents the maximum number of input tokens for the VLLM model. | |
# Remember to adjust it according to your own configuration. | |
VIDEO_TOTAL_PIXELS = int(float(os.environ.get('VIDEO_MAX_PIXELS', 128000 * 28 * 28 * 0.9))) | |
logger.info(f"set VIDEO_TOTAL_PIXELS: {VIDEO_TOTAL_PIXELS}") | |
def round_by_factor(number: int, factor: int) -> int: | |
"""Returns the closest integer to 'number' that is divisible by 'factor'.""" | |
return round(number / factor) * factor | |
def ceil_by_factor(number: int, factor: int) -> int: | |
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'.""" | |
return math.ceil(number / factor) * factor | |
def floor_by_factor(number: int, factor: int) -> int: | |
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'.""" | |
return math.floor(number / factor) * factor | |
def smart_resize( | |
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS | |
) -> tuple[int, int]: | |
""" | |
Rescales the image so that the following conditions are met: | |
1. Both dimensions (height and width) are divisible by 'factor'. | |
2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. | |
3. The aspect ratio of the image is maintained as closely as possible. | |
""" | |
if max(height, width) / min(height, width) > MAX_RATIO: | |
raise ValueError( | |
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}" | |
) | |
h_bar = max(factor, round_by_factor(height, factor)) | |
w_bar = max(factor, round_by_factor(width, factor)) | |
if h_bar * w_bar > max_pixels: | |
beta = math.sqrt((height * width) / max_pixels) | |
h_bar = max(factor, floor_by_factor(height / beta, factor)) | |
w_bar = max(factor, floor_by_factor(width / beta, factor)) | |
elif h_bar * w_bar < min_pixels: | |
beta = math.sqrt(min_pixels / (height * width)) | |
h_bar = ceil_by_factor(height * beta, factor) | |
w_bar = ceil_by_factor(width * beta, factor) | |
return h_bar, w_bar | |
def to_rgb(pil_image: Image.Image) -> Image.Image: | |
if pil_image.mode == 'RGBA': | |
white_background = Image.new("RGB", pil_image.size, (255, 255, 255)) | |
white_background.paste(pil_image, mask=pil_image.split()[3]) # Use alpha channel as mask | |
return white_background | |
else: | |
return pil_image.convert("RGB") | |
def fetch_image(ele: dict[str, str | Image.Image], size_factor: int = IMAGE_FACTOR) -> Image.Image: | |
if "image" in ele: | |
image = ele["image"] | |
else: | |
image = ele["image_url"] | |
image_obj = None | |
if isinstance(image, Image.Image): | |
image_obj = image | |
elif image.startswith("http://") or image.startswith("https://"): | |
# fix memory leak issue while using BytesIO | |
with requests.get(image, stream=True) as response: | |
response.raise_for_status() | |
with BytesIO(response.content) as bio: | |
image_obj = copy.deepcopy(Image.open(bio)) | |
elif image.startswith("file://"): | |
image_obj = Image.open(image[7:]) | |
elif image.startswith("data:image"): | |
if "base64," in image: | |
_, base64_data = image.split("base64,", 1) | |
data = base64.b64decode(base64_data) | |
# fix memory leak issue while using BytesIO | |
with BytesIO(data) as bio: | |
image_obj = copy.deepcopy(Image.open(bio)) | |
else: | |
image_obj = Image.open(image) | |
if image_obj is None: | |
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}") | |
image = to_rgb(image_obj) | |
## resize | |
if "resized_height" in ele and "resized_width" in ele: | |
resized_height, resized_width = smart_resize( | |
ele["resized_height"], | |
ele["resized_width"], | |
factor=size_factor, | |
) | |
else: | |
width, height = image.size | |
min_pixels = ele.get("min_pixels", MIN_PIXELS) | |
max_pixels = ele.get("max_pixels", MAX_PIXELS) | |
resized_height, resized_width = smart_resize( | |
height, | |
width, | |
factor=size_factor, | |
min_pixels=min_pixels, | |
max_pixels=max_pixels, | |
) | |
image = image.resize((resized_width, resized_height)) | |
return image | |
def smart_nframes( | |
ele: dict, | |
total_frames: int, | |
video_fps: int | float, | |
) -> int: | |
"""calculate the number of frames for video used for model inputs. | |
Args: | |
ele (dict): a dict contains the configuration of video. | |
support either `fps` or `nframes`: | |
- nframes: the number of frames to extract for model inputs. | |
- fps: the fps to extract frames for model inputs. | |
- min_frames: the minimum number of frames of the video, only used when fps is provided. | |
- max_frames: the maximum number of frames of the video, only used when fps is provided. | |
total_frames (int): the original total number of frames of the video. | |
video_fps (int | float): the original fps of the video. | |
Raises: | |
ValueError: nframes should in interval [FRAME_FACTOR, total_frames]. | |
Returns: | |
int: the number of frames for video used for model inputs. | |
""" | |
assert not ("fps" in ele and "nframes" in ele), "Only accept either `fps` or `nframes`" | |
if "nframes" in ele: | |
nframes = round_by_factor(ele["nframes"], FRAME_FACTOR) | |
else: | |
fps = ele.get("fps", FPS) | |
min_frames = ceil_by_factor(ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR) | |
max_frames = floor_by_factor(ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), FRAME_FACTOR) | |
nframes = total_frames / video_fps * fps | |
if nframes > total_frames: | |
logger.warning(f"smart_nframes: nframes[{nframes}] > total_frames[{total_frames}]") | |
nframes = min(min(max(nframes, min_frames), max_frames), total_frames) | |
nframes = floor_by_factor(nframes, FRAME_FACTOR) | |
if not (FRAME_FACTOR <= nframes and nframes <= total_frames): | |
raise ValueError(f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}.") | |
return nframes | |
def _read_video_torchvision( | |
ele: dict, | |
) -> (torch.Tensor, float): | |
"""read video using torchvision.io.read_video | |
Args: | |
ele (dict): a dict contains the configuration of video. | |
support keys: | |
- video: the path of video. support "file://", "http://", "https://" and local path. | |
- video_start: the start time of video. | |
- video_end: the end time of video. | |
Returns: | |
torch.Tensor: the video tensor with shape (T, C, H, W). | |
""" | |
video_path = ele["video"] | |
if version.parse(torchvision.__version__) < version.parse("0.19.0"): | |
if "http://" in video_path or "https://" in video_path: | |
warnings.warn("torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0.") | |
if "file://" in video_path: | |
video_path = video_path[7:] | |
st = time.time() | |
video, audio, info = io.read_video( | |
video_path, | |
start_pts=ele.get("video_start", 0.0), | |
end_pts=ele.get("video_end", None), | |
pts_unit="sec", | |
output_format="TCHW", | |
) | |
total_frames, video_fps = video.size(0), info["video_fps"] | |
logger.info(f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s") | |
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) | |
idx = torch.linspace(0, total_frames - 1, nframes).round().long() | |
sample_fps = nframes / max(total_frames, 1e-6) * video_fps | |
video = video[idx] | |
return video, sample_fps | |
def is_decord_available() -> bool: | |
import importlib.util | |
return importlib.util.find_spec("decord") is not None | |
def calculate_video_frame_range( | |
ele: dict, | |
total_frames: int, | |
video_fps: float, | |
) -> tuple[int, int, int]: | |
""" | |
Calculate the start and end frame indices based on the given time range. | |
Args: | |
ele (dict): A dictionary containing optional 'video_start' and 'video_end' keys (in seconds). | |
total_frames (int): Total number of frames in the video. | |
video_fps (float): Frames per second of the video. | |
Returns: | |
tuple: A tuple containing (start_frame, end_frame, frame_count). | |
Raises: | |
ValueError: If input parameters are invalid or the time range is inconsistent. | |
""" | |
# Validate essential parameters | |
if video_fps <= 0: | |
raise ValueError("video_fps must be a positive number") | |
if total_frames <= 0: | |
raise ValueError("total_frames must be a positive integer") | |
# Get start and end time in seconds | |
video_start = ele.get("video_start", None) | |
video_end = ele.get("video_end", None) | |
if video_start is None and video_end is None: | |
return 0, total_frames - 1, total_frames | |
max_duration = total_frames / video_fps | |
# Process start frame | |
if video_start is not None: | |
video_start_clamped = max(0.0, min(video_start, max_duration)) | |
start_frame = math.ceil(video_start_clamped * video_fps) | |
else: | |
start_frame = 0 | |
# Process end frame | |
if video_end is not None: | |
video_end_clamped = max(0.0, min(video_end, max_duration)) | |
end_frame = math.floor(video_end_clamped * video_fps) | |
end_frame = min(end_frame, total_frames - 1) | |
else: | |
end_frame = total_frames - 1 | |
# Validate frame order | |
if start_frame >= end_frame: | |
raise ValueError( | |
f"Invalid time range: Start frame {start_frame} (at {video_start_clamped if video_start is not None else 0}s) " | |
f"exceeds end frame {end_frame} (at {video_end_clamped if video_end is not None else max_duration}s). " | |
f"Video duration: {max_duration:.2f}s ({total_frames} frames @ {video_fps}fps)" | |
) | |
logger.info(f"calculate video frame range: {start_frame=}, {end_frame=}, {total_frames=} from {video_start=}, {video_end=}, {video_fps=:.3f}") | |
return start_frame, end_frame, end_frame - start_frame + 1 | |
def _read_video_decord( | |
ele: dict, | |
) -> (torch.Tensor, float): | |
"""read video using decord.VideoReader | |
Args: | |
ele (dict): a dict contains the configuration of video. | |
support keys: | |
- video: the path of video. support "file://", "http://", "https://" and local path. | |
- video_start: the start time of video. | |
- video_end: the end time of video. | |
Returns: | |
torch.Tensor: the video tensor with shape (T, C, H, W). | |
""" | |
import decord | |
video_path = ele["video"] | |
st = time.time() | |
vr = decord.VideoReader(video_path) | |
total_frames, video_fps = len(vr), vr.get_avg_fps() | |
start_frame, end_frame, total_frames = calculate_video_frame_range( | |
ele, | |
total_frames, | |
video_fps, | |
) | |
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) | |
idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist() | |
video = vr.get_batch(idx).asnumpy() | |
video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format | |
logger.info(f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s") | |
sample_fps = nframes / max(total_frames, 1e-6) * video_fps | |
return video, sample_fps | |
def is_torchcodec_available() -> bool: | |
"""Check if torchcodec is available and properly installed.""" | |
try: | |
import importlib.util | |
if importlib.util.find_spec("torchcodec") is None: | |
return False | |
from torchcodec.decoders import VideoDecoder | |
return True | |
except (ImportError, AttributeError, Exception): | |
return False | |
def _read_video_torchcodec( | |
ele: dict, | |
) -> (torch.Tensor, float): | |
"""read video using torchcodec.decoders.VideoDecoder | |
Args: | |
ele (dict): a dict contains the configuration of video. | |
support keys: | |
- video: the path of video. support "file://", "http://", "https://" and local path. | |
- video_start: the start time of video. | |
- video_end: the end time of video. | |
Returns: | |
torch.Tensor: the video tensor with shape (T, C, H, W). | |
""" | |
from torchcodec.decoders import VideoDecoder | |
TORCHCODEC_NUM_THREADS = int(os.environ.get('TORCHCODEC_NUM_THREADS', 8)) | |
logger.info(f"set TORCHCODEC_NUM_THREADS: {TORCHCODEC_NUM_THREADS}") | |
video_path = ele["video"] | |
st = time.time() | |
decoder = VideoDecoder(video_path, num_ffmpeg_threads=TORCHCODEC_NUM_THREADS) | |
video_fps = decoder.metadata.average_fps | |
total_frames = decoder.metadata.num_frames | |
start_frame, end_frame, total_frames = calculate_video_frame_range( | |
ele, | |
total_frames, | |
video_fps, | |
) | |
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) | |
idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist() | |
sample_fps = nframes / max(total_frames, 1e-6) * video_fps | |
video = decoder.get_frames_at(indices=idx).data | |
logger.info(f"torchcodec: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s") | |
return video, sample_fps | |
VIDEO_READER_BACKENDS = { | |
"decord": _read_video_decord, | |
"torchvision": _read_video_torchvision, | |
"torchcodec": _read_video_torchcodec, | |
} | |
FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None) | |
def get_video_reader_backend() -> str: | |
if FORCE_QWENVL_VIDEO_READER is not None: | |
video_reader_backend = FORCE_QWENVL_VIDEO_READER | |
elif is_torchcodec_available(): | |
video_reader_backend = "torchcodec" | |
elif is_decord_available(): | |
video_reader_backend = "decord" | |
else: | |
video_reader_backend = "torchvision" | |
print(f"qwen-vl-utils using {video_reader_backend} to read video.", file=sys.stderr) | |
return video_reader_backend | |
def fetch_video(ele: dict, image_factor: int = IMAGE_FACTOR, return_video_sample_fps: bool = False) -> torch.Tensor | list[Image.Image]: | |
if isinstance(ele["video"], str): | |
video_reader_backend = get_video_reader_backend() | |
try: | |
video, sample_fps = VIDEO_READER_BACKENDS[video_reader_backend](ele) | |
except Exception as e: | |
logger.warning(f"video_reader_backend {video_reader_backend} error, use torchvision as default, msg: {e}") | |
video, sample_fps = VIDEO_READER_BACKENDS["torchvision"](ele) | |
nframes, _, height, width = video.shape | |
min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS) | |
total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS) | |
max_pixels = max(min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), int(min_pixels * 1.05)) | |
max_pixels_supposed = ele.get("max_pixels", max_pixels) | |
if max_pixels_supposed > max_pixels: | |
logger.warning(f"The given max_pixels[{max_pixels_supposed}] exceeds limit[{max_pixels}].") | |
max_pixels = min(max_pixels_supposed, max_pixels) | |
if "resized_height" in ele and "resized_width" in ele: | |
resized_height, resized_width = smart_resize( | |
ele["resized_height"], | |
ele["resized_width"], | |
factor=image_factor, | |
) | |
else: | |
resized_height, resized_width = smart_resize( | |
height, | |
width, | |
factor=image_factor, | |
min_pixels=min_pixels, | |
max_pixels=max_pixels, | |
) | |
video = transforms.functional.resize( | |
video, | |
[resized_height, resized_width], | |
interpolation=InterpolationMode.BICUBIC, | |
antialias=True, | |
).float() | |
if return_video_sample_fps: | |
return video, sample_fps | |
return video | |
else: | |
assert isinstance(ele["video"], (list, tuple)) | |
process_info = ele.copy() | |
process_info.pop("type", None) | |
process_info.pop("video", None) | |
images = [ | |
fetch_image({"image": video_element, **process_info}, size_factor=image_factor) | |
for video_element in ele["video"] | |
] | |
nframes = ceil_by_factor(len(images), FRAME_FACTOR) | |
if len(images) < nframes: | |
images.extend([images[-1]] * (nframes - len(images))) | |
if return_video_sample_fps: | |
return images, process_info.pop("fps", 2.0) | |
return images | |
def extract_vision_info(conversations: list[dict] | list[list[dict]]) -> list[dict]: | |
vision_infos = [] | |
if isinstance(conversations[0], dict): | |
conversations = [conversations] | |
for conversation in conversations: | |
for message in conversation: | |
if isinstance(message["content"], list): | |
for ele in message["content"]: | |
if ( | |
"image" in ele | |
or "image_url" in ele | |
or "video" in ele | |
or ele.get("type","") in ("image", "image_url", "video") | |
): | |
vision_infos.append(ele) | |
return vision_infos | |
def process_vision_info( | |
conversations: list[dict] | list[list[dict]], | |
return_video_kwargs: bool = False, | |
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] | None, Optional[dict]]: | |
vision_infos = extract_vision_info(conversations) | |
## Read images or videos | |
image_inputs = [] | |
video_inputs = [] | |
video_sample_fps_list = [] | |
for vision_info in vision_infos: | |
if "image" in vision_info or "image_url" in vision_info: | |
image_inputs.append(fetch_image(vision_info)) | |
elif "video" in vision_info: | |
video_input, video_sample_fps = fetch_video(vision_info, return_video_sample_fps=True) | |
video_sample_fps_list.append(video_sample_fps) | |
video_inputs.append(video_input) | |
else: | |
raise ValueError("image, image_url or video should in content.") | |
if len(image_inputs) == 0: | |
image_inputs = None | |
if len(video_inputs) == 0: | |
video_inputs = None | |
if return_video_kwargs: | |
return image_inputs, video_inputs, {'fps': video_sample_fps_list} | |
return image_inputs, video_inputs | |