Spaces:
Running
Running
Update rag_engine.py
Browse files- rag_engine.py +17 -37
rag_engine.py
CHANGED
@@ -66,7 +66,8 @@ local_metadata_file = "metadata.jsonl"
|
|
66 |
|
67 |
def load_model():
|
68 |
try:
|
69 |
-
|
|
|
70 |
# Force model to CPU - more stable than GPU for this use case
|
71 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
72 |
|
@@ -79,20 +80,22 @@ def load_model():
|
|
79 |
torch_dtype=torch.float16 # Use half precision
|
80 |
)
|
81 |
|
82 |
-
# Move model to
|
83 |
-
model = model.to(
|
84 |
model.eval()
|
85 |
torch.set_grad_enabled(False)
|
86 |
|
|
|
87 |
st.session_state.tokenizer = tokenizer
|
88 |
st.session_state.model = model
|
89 |
|
90 |
print("✅ Model loaded successfully")
|
91 |
-
|
92 |
return st.session_state.tokenizer, st.session_state.model
|
93 |
except Exception as e:
|
94 |
print(f"❌ Error loading model: {str(e)}")
|
95 |
-
|
|
|
96 |
|
97 |
def download_file_from_gcs(bucket, gcs_path, local_path):
|
98 |
"""Download a file from GCS to local storage."""
|
@@ -172,41 +175,18 @@ query_embedding_cache = {}
|
|
172 |
def get_embedding(text):
|
173 |
if text in query_embedding_cache:
|
174 |
return query_embedding_cache[text]
|
175 |
-
|
176 |
try:
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
truncation=True,
|
185 |
-
return_tensors="pt",
|
186 |
-
max_length=512,
|
187 |
-
return_attention_mask=True
|
188 |
-
)
|
189 |
-
|
190 |
-
# Move to CPU explicitly before processing
|
191 |
-
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
192 |
|
193 |
-
|
194 |
-
outputs = model(**inputs)
|
195 |
-
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
|
196 |
-
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
|
197 |
-
# Ensure we detach and move to numpy on CPU
|
198 |
-
embeddings = embeddings.detach().cpu().numpy()
|
199 |
-
|
200 |
-
# Explicitly clean up
|
201 |
-
del outputs
|
202 |
-
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
203 |
|
204 |
-
|
205 |
-
return embeddings
|
206 |
-
except Exception as e:
|
207 |
-
print(f"❌ Embedding error: {str(e)}")
|
208 |
-
st.error(f"Embedding error: {str(e)}")
|
209 |
-
return np.zeros((1, 384), dtype=np.float32) # Changed from 1024 to 384 for e5-small-v2
|
210 |
|
211 |
def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
|
212 |
"""Retrieve top-k most relevant passages using FAISS with metadata."""
|
|
|
66 |
|
67 |
def load_model():
|
68 |
try:
|
69 |
+
# Initialize model if it doesn't exist
|
70 |
+
if 'model' not in st.session_state or st.session_state.model is None:
|
71 |
# Force model to CPU - more stable than GPU for this use case
|
72 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
73 |
|
|
|
80 |
torch_dtype=torch.float16 # Use half precision
|
81 |
)
|
82 |
|
83 |
+
# Move model to CPU explicitly
|
84 |
+
model = model.to('cpu')
|
85 |
model.eval()
|
86 |
torch.set_grad_enabled(False)
|
87 |
|
88 |
+
# Store in session state
|
89 |
st.session_state.tokenizer = tokenizer
|
90 |
st.session_state.model = model
|
91 |
|
92 |
print("✅ Model loaded successfully")
|
93 |
+
|
94 |
return st.session_state.tokenizer, st.session_state.model
|
95 |
except Exception as e:
|
96 |
print(f"❌ Error loading model: {str(e)}")
|
97 |
+
# Return None values instead of raising to avoid crashing
|
98 |
+
return None, None
|
99 |
|
100 |
def download_file_from_gcs(bucket, gcs_path, local_path):
|
101 |
"""Download a file from GCS to local storage."""
|
|
|
175 |
def get_embedding(text):
|
176 |
if text in query_embedding_cache:
|
177 |
return query_embedding_cache[text]
|
|
|
178 |
try:
|
179 |
+
# Ensure model initialization
|
180 |
+
if 'model' not in st.session_state or st.session_state.model is None:
|
181 |
+
tokenizer, model = load_model()
|
182 |
+
if model is None:
|
183 |
+
return np.zeros((1, 384), dtype=np.float32) # Fallback
|
184 |
+
else:
|
185 |
+
tokenizer, model = st.session_state.tokenizer, st.session_state.model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
+
# Rest of your code...
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
|
192 |
"""Retrieve top-k most relevant passages using FAISS with metadata."""
|