Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,6 +13,7 @@ import subprocess
|
|
13 |
import shutil
|
14 |
import base64
|
15 |
import logging
|
|
|
16 |
|
17 |
# Set up logging
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -58,7 +59,6 @@ sys.path.append(MV_ADAPTER_CODE_DIR)
|
|
58 |
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
59 |
|
60 |
try:
|
61 |
-
# triposg
|
62 |
from image_process import prepare_image
|
63 |
from briarmbg import BriaRMBG
|
64 |
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
@@ -72,7 +72,6 @@ except Exception as e:
|
|
72 |
raise
|
73 |
|
74 |
try:
|
75 |
-
# mv adapter
|
76 |
NUM_VIEWS = 6
|
77 |
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
78 |
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
@@ -144,7 +143,7 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
144 |
|
145 |
torch.cuda.empty_cache()
|
146 |
|
147 |
-
height, width =
|
148 |
cameras = get_orthogonal_camera(
|
149 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
150 |
distance=[1.8] * NUM_VIEWS,
|
@@ -168,13 +167,7 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
168 |
normal_background=0.0,
|
169 |
)
|
170 |
control_images = (
|
171 |
-
|
172 |
-
[
|
173 |
-
(render_out.pos + 0.5).clamp(0, 1),
|
174 |
-
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
175 |
-
],
|
176 |
-
dim=-1,
|
177 |
-
)
|
178 |
.permute(0, 3, 1, 2)
|
179 |
.to(DEVICE)
|
180 |
)
|
@@ -234,14 +227,12 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
234 |
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER):
|
235 |
try:
|
236 |
logger.info("Starting gradio_generate")
|
237 |
-
# Verify API key
|
238 |
api_key = os.getenv("POLYGENIX_API_KEY", "your-secret-api-key")
|
239 |
request = gr.Request()
|
240 |
if not request.headers.get("x-api-key") == api_key:
|
241 |
logger.error("Invalid API key")
|
242 |
raise ValueError("Invalid API key")
|
243 |
|
244 |
-
# Handle base64 image or file path
|
245 |
if image.startswith("data:image"):
|
246 |
logger.info("Processing base64 image")
|
247 |
base64_string = image.split(",")[1]
|
@@ -291,9 +282,7 @@ def get_random_seed(randomize_seed, seed):
|
|
291 |
logger.error(f"Error in get_random_seed: {str(e)}")
|
292 |
raise
|
293 |
|
294 |
-
|
295 |
def download_image(url: str, save_path: str) -> str:
|
296 |
-
"""Download an image from a URL and save it locally."""
|
297 |
try:
|
298 |
logger.info(f"Downloading image from {url}")
|
299 |
response = requests.get(url, stream=True)
|
@@ -312,7 +301,6 @@ def download_image(url: str, save_path: str) -> str:
|
|
312 |
def run_segmentation(image):
|
313 |
try:
|
314 |
logger.info("Running segmentation")
|
315 |
-
# Handle FileData dict or URL
|
316 |
if isinstance(image, dict):
|
317 |
image_path = image.get("path") or image.get("url")
|
318 |
if not image_path:
|
@@ -340,7 +328,7 @@ def run_segmentation(image):
|
|
340 |
@spaces.GPU(duration=5)
|
341 |
@torch.no_grad()
|
342 |
def image_to_3d(
|
343 |
-
image,
|
344 |
seed: int,
|
345 |
num_inference_steps: int,
|
346 |
guidance_scale: float,
|
@@ -350,7 +338,6 @@ def image_to_3d(
|
|
350 |
):
|
351 |
try:
|
352 |
logger.info("Running image_to_3d")
|
353 |
-
# Handle FileData dict from gradio_client
|
354 |
if isinstance(image, dict):
|
355 |
image_path = image.get("path") or image.get("url")
|
356 |
if not image_path:
|
@@ -396,7 +383,7 @@ def image_to_3d(
|
|
396 |
def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
397 |
try:
|
398 |
logger.info("Running texture generation")
|
399 |
-
height, width =
|
400 |
cameras = get_orthogonal_camera(
|
401 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
402 |
distance=[1.8] * NUM_VIEWS,
|
@@ -420,13 +407,7 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
420 |
normal_background=0.0,
|
421 |
)
|
422 |
control_images = (
|
423 |
-
|
424 |
-
[
|
425 |
-
(render_out.pos + 0.5).clamp(0, 1),
|
426 |
-
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
427 |
-
],
|
428 |
-
dim=-1,
|
429 |
-
)
|
430 |
.permute(0, 3, 1, 2)
|
431 |
.to(DEVICE)
|
432 |
)
|
@@ -490,7 +471,6 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
490 |
def run_full_api(image, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req: gr.Request = None):
|
491 |
try:
|
492 |
logger.info("Running run_full_api")
|
493 |
-
# Handle FileData dict or URL
|
494 |
if isinstance(image, dict):
|
495 |
image_path = image.get("path") or image.get("url")
|
496 |
if not image_path:
|
|
|
13 |
import shutil
|
14 |
import base64
|
15 |
import logging
|
16 |
+
import requests
|
17 |
|
18 |
# Set up logging
|
19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
59 |
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
60 |
|
61 |
try:
|
|
|
62 |
from image_process import prepare_image
|
63 |
from briarmbg import BriaRMBG
|
64 |
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
|
|
72 |
raise
|
73 |
|
74 |
try:
|
|
|
75 |
NUM_VIEWS = 6
|
76 |
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
77 |
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
|
|
143 |
|
144 |
torch.cuda.empty_cache()
|
145 |
|
146 |
+
height, width = 1920, 1080 # Set resolution for YouTube Shorts, TikTok, Reels
|
147 |
cameras = get_orthogonal_camera(
|
148 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
149 |
distance=[1.8] * NUM_VIEWS,
|
|
|
167 |
normal_background=0.0,
|
168 |
)
|
169 |
control_images = (
|
170 |
+
(render_out.pos + 0.5).clamp(0, 1) # Use only position map, remove normal map
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
.permute(0, 3, 1, 2)
|
172 |
.to(DEVICE)
|
173 |
)
|
|
|
227 |
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER):
|
228 |
try:
|
229 |
logger.info("Starting gradio_generate")
|
|
|
230 |
api_key = os.getenv("POLYGENIX_API_KEY", "your-secret-api-key")
|
231 |
request = gr.Request()
|
232 |
if not request.headers.get("x-api-key") == api_key:
|
233 |
logger.error("Invalid API key")
|
234 |
raise ValueError("Invalid API key")
|
235 |
|
|
|
236 |
if image.startswith("data:image"):
|
237 |
logger.info("Processing base64 image")
|
238 |
base64_string = image.split(",")[1]
|
|
|
282 |
logger.error(f"Error in get_random_seed: {str(e)}")
|
283 |
raise
|
284 |
|
|
|
285 |
def download_image(url: str, save_path: str) -> str:
|
|
|
286 |
try:
|
287 |
logger.info(f"Downloading image from {url}")
|
288 |
response = requests.get(url, stream=True)
|
|
|
301 |
def run_segmentation(image):
|
302 |
try:
|
303 |
logger.info("Running segmentation")
|
|
|
304 |
if isinstance(image, dict):
|
305 |
image_path = image.get("path") or image.get("url")
|
306 |
if not image_path:
|
|
|
328 |
@spaces.GPU(duration=5)
|
329 |
@torch.no_grad()
|
330 |
def image_to_3d(
|
331 |
+
image,
|
332 |
seed: int,
|
333 |
num_inference_steps: int,
|
334 |
guidance_scale: float,
|
|
|
338 |
):
|
339 |
try:
|
340 |
logger.info("Running image_to_3d")
|
|
|
341 |
if isinstance(image, dict):
|
342 |
image_path = image.get("path") or image.get("url")
|
343 |
if not image_path:
|
|
|
383 |
def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
384 |
try:
|
385 |
logger.info("Running texture generation")
|
386 |
+
height, width = 1920, 1080 # Set resolution for YouTube Shorts, TikTok, Reels
|
387 |
cameras = get_orthogonal_camera(
|
388 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
389 |
distance=[1.8] * NUM_VIEWS,
|
|
|
407 |
normal_background=0.0,
|
408 |
)
|
409 |
control_images = (
|
410 |
+
(render_out.pos + 0.5).clamp(0, 1) # Use only position map, remove normal map
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
.permute(0, 3, 1, 2)
|
412 |
.to(DEVICE)
|
413 |
)
|
|
|
471 |
def run_full_api(image, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req: gr.Request = None):
|
472 |
try:
|
473 |
logger.info("Running run_full_api")
|
|
|
474 |
if isinstance(image, dict):
|
475 |
image_path = image.get("path") or image.get("url")
|
476 |
if not image_path:
|