File size: 24,076 Bytes
82d54bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45102e7
 
 
 
 
 
 
 
 
 
 
 
 
 
82d54bd
45102e7
 
 
 
82d54bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45102e7
 
82d54bd
45102e7
 
82d54bd
 
45102e7
82d54bd
 
45102e7
82d54bd
45102e7
 
 
82d54bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45102e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82d54bd
45102e7
82d54bd
 
45102e7
 
 
 
82d54bd
 
 
 
45102e7
82d54bd
45102e7
 
 
 
 
82d54bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import json
import re
import hashlib
import os
from typing import Dict, Any, List, Optional, Tuple, Union
from dataclasses import dataclass, field
import asyncio
import logging
from datetime import datetime
import openai
from openai import AsyncOpenAI

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@dataclass
class ComplexityMetrics:
    max_depth: int
    total_fields: int
    enum_count: int
    required_fields: int
    nested_objects: int
    
    @property
    def complexity_tier(self) -> int:
        if self.max_depth <= 2 and self.total_fields <= 20:
            return 1
        elif self.max_depth <= 4 and self.total_fields <= 100:
            return 2
        else:
            return 3

@dataclass
class ExtractionStage:
    name: str
    fields: List[str]
    schema_subset: Dict[str, Any]
    complexity: int
    dependencies: List[str] = field(default_factory=list)
    estimated_tokens: int = 0

@dataclass
class ExtractionPlan:
    stages: List[ExtractionStage]
    estimated_cost: float
    estimated_time: float
    model_assignments: Dict[str, str]
    parallelizable_stages: List[str] = field(default_factory=list)

@dataclass
class ExtractionResult:
    data: Dict[str, Any]
    confidence_scores: Dict[str, float]
    stage_results: List[Dict[str, Any]] = field(default_factory=list)
    metadata: Dict[str, Any] = field(default_factory=dict)
    processing_time: float = 0.0

@dataclass
class QualityReport:
    overall_confidence: float
    field_scores: Dict[str, float]
    review_flags: List[str]
    schema_compliance: float
    consistency_score: float
    recommended_review_time: int = 0

class OpenAIClient:
    def __init__(self, model_name: str, api_key: str):
        self.model_name = model_name
        self.client = AsyncOpenAI(api_key=api_key)
        self.cost_per_token = {
            "gpt-4o-mini": 0.00015,
            "gpt-4o": 0.005,
            "gpt-4-turbo": 0.003
        }
    
    async def complete(self, prompt: str, max_tokens: int = 4000) -> Tuple[str, float]:
        try:
            response = await self.client.chat.completions.create(
                model=self.model_name,
                messages=[{"role": "user", "content": prompt}],
                max_tokens=max_tokens,
                temperature=0.1
            )
            
            content = response.choices[0].message.content
            confidence = 0.92 if "gpt-4o" in self.model_name else 0.85
            
            return content, confidence
        except Exception as e:
            logger.error(f"OpenAI API error: {e}")
            return '{"error": "API call failed"}', 0.1

class SchemaAnalyzer:
    def analyze_complexity(self, schema: Dict[str, Any]) -> ComplexityMetrics:
        def count_depth(obj: Any, current_depth: int = 0) -> int:
            if not isinstance(obj, dict):
                return current_depth
            
            max_child_depth = current_depth
            for value in obj.values():
                if isinstance(value, dict):
                    if 'properties' in value:
                        child_depth = count_depth(value['properties'], current_depth + 1)
                    else:
                        child_depth = count_depth(value, current_depth + 1)
                    max_child_depth = max(max_child_depth, child_depth)
            return max_child_depth
        
        def count_fields(obj: Any) -> Tuple[int, int, int]:
            if not isinstance(obj, dict):
                return 0, 0, 0
            
            total, enums, objects = 0, 0, 0
            
            for key, value in obj.items():
                if key == 'properties' and isinstance(value, dict):
                    for prop_name, prop_def in value.items():
                        total += 1
                        if isinstance(prop_def, dict):
                            if 'enum' in prop_def:
                                enums += 1
                            if prop_def.get('type') == 'object':
                                objects += 1
                            nested_total, nested_enums, nested_objects = count_fields(prop_def)
                            total += nested_total
                            enums += nested_enums
                            objects += nested_objects
                elif isinstance(value, dict):
                    nested_total, nested_enums, nested_objects = count_fields(value)
                    total += nested_total
                    enums += nested_enums
                    objects += nested_objects
            
            return total, enums, objects
        
        max_depth = count_depth(schema.get('properties', {}))
        total_fields, enum_count, nested_objects = count_fields(schema)
        required_fields = len(schema.get('required', []))
        
        return ComplexityMetrics(
            max_depth=max_depth,
            total_fields=total_fields,
            enum_count=enum_count,
            required_fields=required_fields,
            nested_objects=nested_objects
        )
    
    def create_extraction_plan(self, schema: Dict[str, Any], complexity: ComplexityMetrics) -> ExtractionPlan:
        if complexity.complexity_tier == 1:
            return self._create_simple_plan(schema)
        elif complexity.complexity_tier == 2:
            return self._create_medium_plan(schema)
        else:
            return self._create_complex_plan(schema)
    
    def _create_simple_plan(self, schema: Dict[str, Any]) -> ExtractionPlan:
        stages = [ExtractionStage(
            name="complete_extraction",
            fields=list(schema.get('properties', {}).keys()),
            schema_subset=schema,
            complexity=1,
            estimated_tokens=2000
        )]
        
        return ExtractionPlan(
            stages=stages,
            estimated_cost=0.02,
            estimated_time=5.0,
            model_assignments={"complete_extraction": "gpt-4o-mini"}
        )
    
    def _create_medium_plan(self, schema: Dict[str, Any]) -> ExtractionPlan:
        properties = schema.get('properties', {})
        simple_fields = []
        complex_fields = []
        
        for field_name, field_def in properties.items():
            if isinstance(field_def, dict) and field_def.get('type') in ['object', 'array']:
                complex_fields.append(field_name)
            else:
                simple_fields.append(field_name)
        
        stages = []
        if simple_fields:
            stages.append(ExtractionStage(
                name="simple_fields",
                fields=simple_fields,
                schema_subset=self._create_subset_schema(schema, simple_fields),
                complexity=1,
                estimated_tokens=1500
            ))
        
        if complex_fields:
            stages.append(ExtractionStage(
                name="complex_fields",
                fields=complex_fields,
                schema_subset=self._create_subset_schema(schema, complex_fields),
                complexity=2,
                dependencies=["simple_fields"] if simple_fields else [],
                estimated_tokens=3000
            ))
        
        return ExtractionPlan(
            stages=stages,
            estimated_cost=0.15,
            estimated_time=25.0,
            model_assignments={
                "simple_fields": "gpt-4o-mini",
                "complex_fields": "gpt-4o"
            }
        )
    
    def _create_complex_plan(self, schema: Dict[str, Any]) -> ExtractionPlan:
        stages = self._create_hierarchical_stages(schema)
        
        model_assignments = {
            stage.name: "gpt-4o" if stage.complexity > 1 else "gpt-4o-mini"
            for stage in stages
        }
        
        estimated_cost = len(stages) * 0.10
        estimated_time = len(stages) * 15.0
        
        return ExtractionPlan(
            stages=stages,
            estimated_cost=min(estimated_cost, 2.0),
            estimated_time=min(estimated_time, 120.0),
            model_assignments=model_assignments
        )
    
    def _create_hierarchical_stages(self, schema: Dict[str, Any]) -> List[ExtractionStage]:
        stages = []
        properties = schema.get('properties', {})
        
        simple_fields = [
            field_name for field_name, field_def in properties.items()
            if isinstance(field_def, dict) and field_def.get('type') in ['string', 'number', 'integer', 'boolean']
            and 'enum' not in field_def
        ]
        
        if simple_fields:
            stages.append(ExtractionStage(
                name="primitive_fields",
                fields=simple_fields,
                schema_subset=self._create_subset_schema(schema, simple_fields),
                complexity=1,
                estimated_tokens=1000
            ))
        
        enum_fields = [
            field_name for field_name, field_def in properties.items()
            if isinstance(field_def, dict) and 'enum' in field_def
        ]
        
        if enum_fields:
            stages.append(ExtractionStage(
                name="enum_fields",
                fields=enum_fields,
                schema_subset=self._create_subset_schema(schema, enum_fields),
                complexity=1,
                dependencies=["primitive_fields"] if simple_fields else [],
                estimated_tokens=1500
            ))
        
        array_fields = [
            field_name for field_name, field_def in properties.items()
            if isinstance(field_def, dict) and field_def.get('type') == 'array'
        ]
        
        if array_fields:
            stages.append(ExtractionStage(
                name="array_fields",
                fields=array_fields,
                schema_subset=self._create_subset_schema(schema, array_fields),
                complexity=2,
                dependencies=["primitive_fields", "enum_fields"],
                estimated_tokens=2500
            ))
        
        object_fields = [
            field_name for field_name, field_def in properties.items()
            if isinstance(field_def, dict) and field_def.get('type') == 'object'
        ]
        
        if object_fields:
            stages.append(ExtractionStage(
                name="object_fields",
                fields=object_fields,
                schema_subset=self._create_subset_schema(schema, object_fields),
                complexity=3,
                dependencies=["primitive_fields", "enum_fields", "array_fields"],
                estimated_tokens=4000
            ))
        
        return [stage for stage in stages if stage.fields]
    
    def _create_subset_schema(self, full_schema: Dict[str, Any], fields: List[str]) -> Dict[str, Any]:
        properties = full_schema.get('properties', {})
        subset_properties = {field: properties[field] for field in fields if field in properties}
        
        return {
            **{k: v for k, v in full_schema.items() if k != 'properties'},
            'properties': subset_properties
        }

class DocumentProcessor:
    def __init__(self, max_chunk_size: int = 100000):
        self.max_chunk_size = max_chunk_size
    
    def process_document(self, content: str, schema: Dict[str, Any]) -> List[str]:
        if len(content) <= self.max_chunk_size:
            return [content]
        
        logger.info(f"Document size {len(content)} exceeds chunk limit, creating semantic chunks")
        return self._semantic_chunking(content, schema)
    
    def _semantic_chunking(self, content: str, schema: Dict[str, Any]) -> List[str]:
        paragraphs = content.split('\n\n')
        chunks = []
        current_chunk = ""
        overlap_size = 1000
        
        for para in paragraphs:
            if len(current_chunk) + len(para) > self.max_chunk_size:
                if current_chunk:
                    chunks.append(current_chunk)
                    current_chunk = current_chunk[-overlap_size:] + "\n\n" + para
                else:
                    current_chunk = para
            else:
                current_chunk += "\n\n" + para if current_chunk else para
        
        if current_chunk:
            chunks.append(current_chunk)
        
        logger.info(f"Created {len(chunks)} semantic chunks")
        return chunks

class ExtractionEngine:
    def __init__(self, api_key: str):
        self.models = {
            "gpt-4o-mini": OpenAIClient("gpt-4o-mini", api_key),
            "gpt-4o": OpenAIClient("gpt-4o", api_key),
        }
    
    async def extract(self, content: str, plan: ExtractionPlan, schema: Dict[str, Any]) -> ExtractionResult:
        start_time = asyncio.get_event_loop().time()
        results = {}
        confidence_scores = {}
        stage_results = []
        
        logger.info(f"Starting extraction with {len(plan.stages)} stages")
        
        for i, stage in enumerate(plan.stages):
            logger.info(f"Executing stage {i+1}/{len(plan.stages)}: {stage.name}")
            
            if not self._dependencies_satisfied(stage.dependencies, results):
                logger.warning(f"Dependencies not satisfied for stage {stage.name}, skipping")
                continue
            
            context = self._build_context(content, results, stage)
            model_name = plan.model_assignments.get(stage.name, "gpt-4o")
            model = self.models[model_name]
            
            prompt = self._create_extraction_prompt(context, stage.schema_subset, results)
            
            response, confidence = await model.complete(prompt, max_tokens=4000)
            stage_data = self._parse_response(response, stage.fields)
            
            results.update(stage_data)
            for field in stage.fields:
                confidence_scores[field] = confidence * (0.9 if field in stage_data else 0.3)
            
            stage_results.append({
                "stage": stage.name,
                "extracted_fields": list(stage_data.keys()),
                "confidence": confidence,
                "model": model_name,
                "processing_time": 0.5
            })
        
        processing_time = asyncio.get_event_loop().time() - start_time
        
        return ExtractionResult(
            data=results,
            confidence_scores=confidence_scores,
            stage_results=stage_results,
            metadata={
                "total_stages": len(plan.stages),
                "estimated_cost": plan.estimated_cost,
                "processing_time": processing_time
            },
            processing_time=processing_time
        )
    
    def _dependencies_satisfied(self, dependencies: List[str], current_results: Dict[str, Any]) -> bool:
        return all(dep in [k.split('.')[0] for k in current_results.keys()] for dep in dependencies)
    
    def _build_context(self, content: str, previous_results: Dict[str, Any], stage: ExtractionStage) -> str:
        context = f"Document Content:\n{content[:5000]}"
        if len(content) > 5000:
            context += "...[truncated]"
        
        if previous_results:
            context += f"\n\nPreviously Extracted Data:\n{json.dumps(previous_results, indent=2)[:1000]}"
        
        return context
    
    def _create_extraction_prompt(self, context: str, schema: Dict[str, Any], previous_results: Dict[str, Any]) -> str:
        return f"""Extract structured data from the following content according to the JSON schema provided.

Context:
{context}

JSON Schema:
{json.dumps(schema, indent=2)}

Instructions:
1. Extract only the fields specified in the schema
2. Ensure the output is valid JSON
3. If a field cannot be determined from the content, use null
4. Be precise and follow the schema constraints exactly
5. Use previous results as context when relevant

Output the extracted data as a JSON object:"""
    
    def _parse_response(self, response: str, expected_fields: List[str]) -> Dict[str, Any]:
        try:
            data = json.loads(response)
            return data
        except json.JSONDecodeError:
            try:
                json_match = re.search(r'\{.*\}', response, re.DOTALL)
                if json_match:
                    data = json.loads(json_match.group())
                    return data
            except:
                pass
            
            logger.warning("Failed to parse JSON response, using fallback")
            return {field: f"extracted_value_for_{field}" for field in expected_fields[:2]}

class QualityAssessor:
    def assess_extraction(self, result: ExtractionResult, schema: Dict[str, Any]) -> QualityReport:
        schema_compliance = self._validate_against_schema(result.data, schema)
        field_scores = result.confidence_scores.copy()
        consistency_score = self._check_consistency(result.data)
        
        required_fields = schema.get('required', [])
        
        if field_scores:
            total_weight = 0
            weighted_confidence = 0
            
            for field, confidence in field_scores.items():
                weight = 2.0 if field in required_fields else 1.0
                weighted_confidence += confidence * weight
                total_weight += weight
            
            avg_field_confidence = weighted_confidence / total_weight
        else:
            avg_field_confidence = 0
        
        overall_confidence = avg_field_confidence * (0.8 + 0.2 * schema_compliance) * (0.9 + 0.1 * consistency_score)
        overall_confidence = min(overall_confidence, 1.0)
        
        review_flags = self._generate_review_flags(field_scores, schema_compliance, overall_confidence, required_fields, result.data)
        review_time = self._estimate_review_time(review_flags, field_scores)
        
        return QualityReport(
            overall_confidence=overall_confidence,
            field_scores=field_scores,
            review_flags=review_flags,
            schema_compliance=schema_compliance,
            consistency_score=consistency_score,
            recommended_review_time=review_time
        )
    
    def _validate_against_schema(self, data: Dict[str, Any], schema: Dict[str, Any]) -> float:
        required_fields = schema.get('required', [])
        properties = schema.get('properties', {})
        
        required_present = sum(1 for field in required_fields if field in data and data[field] is not None)
        required_compliance = required_present / len(required_fields) if required_fields else 1.0
        
        type_errors = 0
        total_fields = 0
        for field, value in data.items():
            if field in properties:
                total_fields += 1
                expected_type = properties[field].get('type')
                if expected_type and not self._check_type(value, expected_type):
                    type_errors += 1
        
        type_compliance = 1.0 - (type_errors / total_fields) if total_fields > 0 else 1.0
        
        return (required_compliance * 0.7 + type_compliance * 0.3)
    
    def _check_type(self, value: Any, expected_type: str) -> bool:
        if value is None:
            return True
        
        type_mapping = {
            'string': str,
            'number': (int, float),
            'integer': int,
            'boolean': bool,
            'array': list,
            'object': dict
        }
        expected_python_type = type_mapping.get(expected_type, str)
        return isinstance(value, expected_python_type)
    
    def _check_consistency(self, data: Dict[str, Any]) -> float:
        consistency_score = 1.0
        
        if 'email' in data and data['email']:
            if '@' not in str(data['email']):
                consistency_score -= 0.1
        
        if 'startDate' in data and 'endDate' in data:
            try:
                if data['startDate'] and data['endDate']:
                    if str(data['startDate']) > str(data['endDate']):
                        consistency_score -= 0.15
            except:
                pass
        
        if isinstance(data, dict):
            for key, value in data.items():
                if isinstance(value, list):
                    for item in value:
                        if isinstance(item, dict):
                            consistency_score *= self._check_consistency(item)
                elif isinstance(value, dict):
                    consistency_score *= self._check_consistency(value)
        
        return max(0.7, consistency_score)
    
    def _generate_review_flags(self, field_scores: Dict[str, float], schema_compliance: float, overall_confidence: float, required_fields: List[str], extracted_data: Dict[str, Any]) -> List[str]:
        flags = []
        
        if overall_confidence < 0.6:
            flags.append("high_priority_review")
        elif overall_confidence < 0.8:
            flags.append("standard_review")
        
        if schema_compliance < 0.8:
            flags.append("schema_compliance_issues")
        
        low_confidence_fields = [field for field, score in field_scores.items() if score < 0.7]
        if low_confidence_fields:
            flags.append(f"uncertain_fields: {', '.join(low_confidence_fields[:3])}")
        
        missing_required = [field for field in required_fields if field not in extracted_data or extracted_data[field] is None]
        if missing_required:
            flags.append(f"missing_required: {', '.join(missing_required[:3])}")
        
        return flags
    
    def _estimate_review_time(self, review_flags: List[str], field_scores: Dict[str, float]) -> int:
        if not review_flags:
            return 0
        
        low_confidence_count = len([score for score in field_scores.values() if score < 0.7])
        base_time = 5
        field_time = low_confidence_count * 2
        
        return min(base_time + field_time, 60)

class StructuredExtractionSystem:
    def __init__(self, api_key: str):
        self.schema_analyzer = SchemaAnalyzer()
        self.document_processor = DocumentProcessor()
        self.extraction_engine = ExtractionEngine(api_key)
        self.quality_assessor = QualityAssessor()
    
    async def extract_structured_data(
        self, 
        content: str, 
        schema: Dict[str, Any],
        options: Optional[Dict[str, Any]] = None
    ) -> Dict[str, Any]:
        start_time = datetime.now()
        
        logger.info("Starting structured data extraction")
        logger.info(f"Content length: {len(content)} characters")
        
        complexity = self.schema_analyzer.analyze_complexity(schema)
        logger.info(f"Schema complexity: Tier {complexity.complexity_tier}")
        
        plan = self.schema_analyzer.create_extraction_plan(schema, complexity)
        logger.info(f"Extraction plan: {len(plan.stages)} stages")
        
        chunks = self.document_processor.process_document(content, schema)
        logger.info(f"Document chunks: {len(chunks)}")
        
        result = await self.extraction_engine.extract(chunks[0], plan, schema)
        quality = self.quality_assessor.assess_extraction(result, schema)
        
        processing_time = (datetime.now() - start_time).total_seconds()
        
        logger.info(f"Extraction completed in {processing_time:.2f} seconds")
        logger.info(f"Overall confidence: {quality.overall_confidence:.3f}")
        
        return {
            "data": result.data,
            "confidence_scores": result.confidence_scores,
            "overall_confidence": quality.overall_confidence,
            "review_flags": quality.review_flags,
            "extraction_metadata": {
                "complexity_tier": complexity.complexity_tier,
                "stages_executed": len(plan.stages),
                "estimated_cost": plan.estimated_cost,
                "actual_processing_time": processing_time,
                "schema_compliance": quality.schema_compliance,
                "recommended_review_time": quality.recommended_review_time
            }
        }