File size: 26,886 Bytes
82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 5f40cee 82d54bd 45102e7 5f40cee 45102e7 5f40cee 45102e7 82d54bd 5f40cee 45102e7 5f40cee 82d54bd 45102e7 82d54bd 45102e7 82d54bd 45102e7 82d54bd 45102e7 82d54bd 45102e7 82d54bd 45102e7 82d54bd 5f40cee 82d54bd 5f40cee 45102e7 5f40cee 45102e7 5f40cee 82d54bd 5f40cee 45102e7 5f40cee 82d54bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
import json
import re
import hashlib
import os
from typing import Dict, Any, List, Optional, Tuple, Union
from dataclasses import dataclass, field
import asyncio
import logging
from datetime import datetime
import openai
from openai import AsyncOpenAI
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class ComplexityMetrics:
max_depth: int
total_fields: int
enum_count: int
required_fields: int
nested_objects: int
@property
def complexity_tier(self) -> int:
if self.max_depth <= 2 and self.total_fields <= 20:
return 1
elif self.max_depth <= 4 and self.total_fields <= 100:
return 2
else:
return 3
@dataclass
class ExtractionStage:
name: str
fields: List[str]
schema_subset: Dict[str, Any]
complexity: int
dependencies: List[str] = field(default_factory=list)
estimated_tokens: int = 0
@dataclass
class ExtractionPlan:
stages: List[ExtractionStage]
estimated_cost: float
estimated_time: float
model_assignments: Dict[str, str]
parallelizable_stages: List[str] = field(default_factory=list)
@dataclass
class ExtractionResult:
data: Dict[str, Any]
confidence_scores: Dict[str, float]
stage_results: List[Dict[str, Any]] = field(default_factory=list)
metadata: Dict[str, Any] = field(default_factory=dict)
processing_time: float = 0.0
@dataclass
class QualityReport:
overall_confidence: float
field_scores: Dict[str, float]
review_flags: List[str]
schema_compliance: float
consistency_score: float
recommended_review_time: int = 0
class OpenAIClient:
def __init__(self, model_name: str, api_key: str):
self.model_name = model_name
self.client = AsyncOpenAI(api_key=api_key)
self.cost_per_token = {
"gpt-4o-mini": 0.00015,
"gpt-4o": 0.005,
"gpt-4-turbo": 0.003
}
async def complete(self, prompt: str, max_tokens: int = 4000) -> Tuple[str, float]:
try:
response = await self.client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": "You are a precise data extraction specialist. Extract data according to the provided schema and output only valid JSON."},
{"role": "user", "content": prompt}
],
max_tokens=max_tokens,
temperature=0.1,
top_p=0.9
)
content = response.choices[0].message.content
confidence = 0.9 if "gpt-4o" in self.model_name else 0.8
if content and len(content.strip()) > 10:
confidence += 0.05
return content, confidence
except Exception as e:
logger.error(f"OpenAI API error: {e}")
return '{"error": "API call failed", "details": "' + str(e) + '"}', 0.1
class SchemaAnalyzer:
def analyze_complexity(self, schema: Dict[str, Any]) -> ComplexityMetrics:
def count_depth(obj: Any, current_depth: int = 0) -> int:
if not isinstance(obj, dict):
return current_depth
max_child_depth = current_depth
for value in obj.values():
if isinstance(value, dict):
if 'properties' in value:
child_depth = count_depth(value['properties'], current_depth + 1)
else:
child_depth = count_depth(value, current_depth + 1)
max_child_depth = max(max_child_depth, child_depth)
return max_child_depth
def count_fields(obj: Any) -> Tuple[int, int, int]:
if not isinstance(obj, dict):
return 0, 0, 0
total, enums, objects = 0, 0, 0
for key, value in obj.items():
if key == 'properties' and isinstance(value, dict):
for prop_name, prop_def in value.items():
total += 1
if isinstance(prop_def, dict):
if 'enum' in prop_def:
enums += 1
if prop_def.get('type') == 'object':
objects += 1
nested_total, nested_enums, nested_objects = count_fields(prop_def)
total += nested_total
enums += nested_enums
objects += nested_objects
elif isinstance(value, dict):
nested_total, nested_enums, nested_objects = count_fields(value)
total += nested_total
enums += nested_enums
objects += nested_objects
return total, enums, objects
max_depth = count_depth(schema.get('properties', {}))
total_fields, enum_count, nested_objects = count_fields(schema)
required_fields = len(schema.get('required', []))
return ComplexityMetrics(
max_depth=max_depth,
total_fields=total_fields,
enum_count=enum_count,
required_fields=required_fields,
nested_objects=nested_objects
)
def create_extraction_plan(self, schema: Dict[str, Any], complexity: ComplexityMetrics) -> ExtractionPlan:
return self._create_single_pass_plan(schema)
def _create_single_pass_plan(self, schema: Dict[str, Any]) -> ExtractionPlan:
stages = [ExtractionStage(
name="complete_extraction",
fields=list(schema.get('properties', {}).keys()),
schema_subset=schema,
complexity=2,
estimated_tokens=4000
)]
return ExtractionPlan(
stages=stages,
estimated_cost=0.15,
estimated_time=15.0,
model_assignments={"complete_extraction": "gpt-4o"}
)
def _create_simple_plan(self, schema: Dict[str, Any]) -> ExtractionPlan:
stages = [ExtractionStage(
name="complete_extraction",
fields=list(schema.get('properties', {}).keys()),
schema_subset=schema,
complexity=1,
estimated_tokens=2000
)]
return ExtractionPlan(
stages=stages,
estimated_cost=0.02,
estimated_time=5.0,
model_assignments={"complete_extraction": "gpt-4o"}
)
def _create_medium_plan(self, schema: Dict[str, Any]) -> ExtractionPlan:
properties = schema.get('properties', {})
simple_fields = []
complex_fields = []
for field_name, field_def in properties.items():
if isinstance(field_def, dict) and field_def.get('type') in ['object', 'array']:
complex_fields.append(field_name)
else:
simple_fields.append(field_name)
stages = []
if simple_fields:
stages.append(ExtractionStage(
name="simple_fields",
fields=simple_fields,
schema_subset=self._create_subset_schema(schema, simple_fields),
complexity=1,
estimated_tokens=1500
))
if complex_fields:
stages.append(ExtractionStage(
name="complex_fields",
fields=complex_fields,
schema_subset=self._create_subset_schema(schema, complex_fields),
complexity=2,
dependencies=["simple_fields"] if simple_fields else [],
estimated_tokens=3000
))
return ExtractionPlan(
stages=stages,
estimated_cost=0.15,
estimated_time=25.0,
model_assignments={
"simple_fields": "gpt-4o-mini",
"complex_fields": "gpt-4o"
}
)
def _create_complex_plan(self, schema: Dict[str, Any]) -> ExtractionPlan:
stages = self._create_hierarchical_stages(schema)
model_assignments = {
stage.name: "gpt-4o" if stage.complexity > 1 else "gpt-4o-mini"
for stage in stages
}
estimated_cost = len(stages) * 0.10
estimated_time = len(stages) * 15.0
return ExtractionPlan(
stages=stages,
estimated_cost=min(estimated_cost, 2.0),
estimated_time=min(estimated_time, 120.0),
model_assignments=model_assignments
)
def _create_hierarchical_stages(self, schema: Dict[str, Any]) -> List[ExtractionStage]:
stages = []
properties = schema.get('properties', {})
simple_fields = [
field_name for field_name, field_def in properties.items()
if isinstance(field_def, dict) and field_def.get('type') in ['string', 'number', 'integer', 'boolean']
and 'enum' not in field_def
]
if simple_fields:
stages.append(ExtractionStage(
name="primitive_fields",
fields=simple_fields,
schema_subset=self._create_subset_schema(schema, simple_fields),
complexity=1,
estimated_tokens=1000
))
enum_fields = [
field_name for field_name, field_def in properties.items()
if isinstance(field_def, dict) and 'enum' in field_def
]
if enum_fields:
stages.append(ExtractionStage(
name="enum_fields",
fields=enum_fields,
schema_subset=self._create_subset_schema(schema, enum_fields),
complexity=1,
dependencies=["primitive_fields"] if simple_fields else [],
estimated_tokens=1500
))
array_fields = [
field_name for field_name, field_def in properties.items()
if isinstance(field_def, dict) and field_def.get('type') == 'array'
]
if array_fields:
stages.append(ExtractionStage(
name="array_fields",
fields=array_fields,
schema_subset=self._create_subset_schema(schema, array_fields),
complexity=2,
dependencies=["primitive_fields", "enum_fields"],
estimated_tokens=2500
))
object_fields = [
field_name for field_name, field_def in properties.items()
if isinstance(field_def, dict) and field_def.get('type') == 'object'
]
if object_fields:
stages.append(ExtractionStage(
name="object_fields",
fields=object_fields,
schema_subset=self._create_subset_schema(schema, object_fields),
complexity=3,
dependencies=["primitive_fields", "enum_fields", "array_fields"],
estimated_tokens=4000
))
return [stage for stage in stages if stage.fields]
def _create_subset_schema(self, full_schema: Dict[str, Any], fields: List[str]) -> Dict[str, Any]:
properties = full_schema.get('properties', {})
subset_properties = {field: properties[field] for field in fields if field in properties}
return {
**{k: v for k, v in full_schema.items() if k != 'properties'},
'properties': subset_properties
}
class DocumentProcessor:
def __init__(self, max_chunk_size: int = 100000):
self.max_chunk_size = max_chunk_size
def process_document(self, content: str, schema: Dict[str, Any]) -> List[str]:
if len(content) <= self.max_chunk_size:
return [content]
logger.info(f"Document size {len(content)} exceeds chunk limit, creating semantic chunks")
return self._semantic_chunking(content, schema)
def _semantic_chunking(self, content: str, schema: Dict[str, Any]) -> List[str]:
paragraphs = content.split('\n\n')
chunks = []
current_chunk = ""
overlap_size = 1000
for para in paragraphs:
if len(current_chunk) + len(para) > self.max_chunk_size:
if current_chunk:
chunks.append(current_chunk)
current_chunk = current_chunk[-overlap_size:] + "\n\n" + para
else:
current_chunk = para
else:
current_chunk += "\n\n" + para if current_chunk else para
if current_chunk:
chunks.append(current_chunk)
logger.info(f"Created {len(chunks)} semantic chunks")
return chunks
class ExtractionEngine:
def __init__(self, api_key: str):
self.models = {
"gpt-4o-mini": OpenAIClient("gpt-4o-mini", api_key),
"gpt-4o": OpenAIClient("gpt-4o", api_key),
}
async def extract(self, content: str, plan: ExtractionPlan, schema: Dict[str, Any]) -> ExtractionResult:
start_time = asyncio.get_event_loop().time()
results = {}
confidence_scores = {}
stage_results = []
logger.info(f"Starting extraction with {len(plan.stages)} stages")
for i, stage in enumerate(plan.stages):
logger.info(f"Executing stage {i+1}/{len(plan.stages)}: {stage.name}")
if not self._dependencies_satisfied(stage.dependencies, results):
logger.warning(f"Dependencies not satisfied for stage {stage.name}, skipping")
continue
context = self._build_context(content, results, stage)
model_name = plan.model_assignments.get(stage.name, "gpt-4o")
model = self.models[model_name]
prompt = self._create_extraction_prompt(context, stage.schema_subset, results)
response, confidence = await model.complete(prompt, max_tokens=4000)
stage_data = self._parse_response(response, stage.fields)
results.update(stage_data)
for field in stage.fields:
confidence_scores[field] = confidence * (0.9 if field in stage_data else 0.3)
stage_results.append({
"stage": stage.name,
"extracted_fields": list(stage_data.keys()),
"confidence": confidence,
"model": model_name,
"processing_time": 0.5
})
processing_time = asyncio.get_event_loop().time() - start_time
return ExtractionResult(
data=results,
confidence_scores=confidence_scores,
stage_results=stage_results,
metadata={
"total_stages": len(plan.stages),
"estimated_cost": plan.estimated_cost,
"processing_time": processing_time
},
processing_time=processing_time
)
def _dependencies_satisfied(self, dependencies: List[str], current_results: Dict[str, Any]) -> bool:
return all(dep in [k.split('.')[0] for k in current_results.keys()] for dep in dependencies)
def _build_context(self, content: str, previous_results: Dict[str, Any], stage: ExtractionStage) -> str:
context = f"Document Content:\n{content[:5000]}"
if len(content) > 5000:
context += "...[truncated]"
if previous_results:
context += f"\n\nPreviously Extracted Data:\n{json.dumps(previous_results, indent=2)[:1000]}"
return context
def _create_extraction_prompt(self, context: str, schema: Dict[str, Any], previous_results: Dict[str, Any]) -> str:
schema_properties = schema.get('properties', {})
required_fields = schema.get('required', [])
field_descriptions = []
for field_name, field_def in schema_properties.items():
if isinstance(field_def, dict):
field_type = field_def.get('type', 'string')
is_required = field_name in required_fields
status = "REQUIRED" if is_required else "optional"
field_descriptions.append(f"- {field_name} ({field_type}) [{status}]")
previous_context = ""
if previous_results:
previous_context = f"\n\nPreviously extracted data:\n{json.dumps(previous_results, indent=2)}"
return f"""Extract ALL specified fields from the document content according to the JSON schema.
DOCUMENT CONTENT:
{context[:4000]}
REQUIRED OUTPUT FIELDS:
{chr(10).join(field_descriptions)}
SCHEMA STRUCTURE:
{json.dumps(schema, indent=2)}{previous_context}
CRITICAL INSTRUCTIONS:
1. Extract ALL fields specified in the schema properties
2. For arrays, extract ALL items found in the content
3. For objects, extract ALL nested properties
4. Use null only if data truly cannot be found
5. Maintain exact schema structure and types
6. Output ONLY valid JSON, no explanations
JSON OUTPUT:"""
def _parse_response(self, response: str, expected_fields: List[str]) -> Dict[str, Any]:
try:
cleaned_response = response.strip()
if not cleaned_response.startswith('{'):
json_start = cleaned_response.find('{')
if json_start != -1:
cleaned_response = cleaned_response[json_start:]
if not cleaned_response.endswith('}'):
json_end = cleaned_response.rfind('}')
if json_end != -1:
cleaned_response = cleaned_response[:json_end + 1]
data = json.loads(cleaned_response)
if isinstance(data, dict):
return data
else:
logger.warning("Response is not a dictionary")
return {}
except json.JSONDecodeError as e:
logger.warning(f"JSON decode error: {e}")
try:
import re
json_pattern = r'\{(?:[^{}]|{(?:[^{}]|{[^{}]*})*})*\}'
matches = re.findall(json_pattern, response, re.DOTALL)
for match in matches:
try:
data = json.loads(match)
if isinstance(data, dict) and data:
return data
except:
continue
except Exception as e:
logger.warning(f"Regex parsing failed: {e}")
logger.error("All JSON parsing attempts failed")
return {}
class QualityAssessor:
def assess_extraction(self, result: ExtractionResult, schema: Dict[str, Any]) -> QualityReport:
schema_compliance = self._validate_against_schema(result.data, schema)
field_scores = result.confidence_scores.copy()
consistency_score = self._check_consistency(result.data)
required_fields = schema.get('required', [])
total_expected_fields = len(schema.get('properties', {}))
extracted_fields = len([k for k, v in result.data.items() if v is not None])
completeness_score = extracted_fields / total_expected_fields if total_expected_fields > 0 else 0
if field_scores:
avg_field_confidence = sum(field_scores.values()) / len(field_scores)
else:
avg_field_confidence = 0
overall_confidence = completeness_score * 0.6 + schema_compliance * 0.3 + consistency_score * 0.1
overall_confidence = min(overall_confidence, 1.0)
review_flags = self._generate_review_flags(field_scores, schema_compliance, overall_confidence, required_fields, result.data, total_expected_fields, extracted_fields)
review_time = self._estimate_review_time(review_flags, field_scores)
return QualityReport(
overall_confidence=overall_confidence,
field_scores=field_scores,
review_flags=review_flags,
schema_compliance=schema_compliance,
consistency_score=consistency_score,
recommended_review_time=review_time
)
def _validate_against_schema(self, data: Dict[str, Any], schema: Dict[str, Any]) -> float:
required_fields = schema.get('required', [])
properties = schema.get('properties', {})
required_present = sum(1 for field in required_fields if field in data and data[field] is not None)
required_compliance = required_present / len(required_fields) if required_fields else 1.0
type_errors = 0
total_fields = 0
for field, value in data.items():
if field in properties:
total_fields += 1
expected_type = properties[field].get('type')
if expected_type and not self._check_type(value, expected_type):
type_errors += 1
type_compliance = 1.0 - (type_errors / total_fields) if total_fields > 0 else 1.0
return (required_compliance * 0.7 + type_compliance * 0.3)
def _check_type(self, value: Any, expected_type: str) -> bool:
if value is None:
return True
type_mapping = {
'string': str,
'number': (int, float),
'integer': int,
'boolean': bool,
'array': list,
'object': dict
}
expected_python_type = type_mapping.get(expected_type, str)
return isinstance(value, expected_python_type)
def _check_consistency(self, data: Dict[str, Any]) -> float:
consistency_score = 1.0
if 'email' in data and data['email']:
if '@' not in str(data['email']):
consistency_score -= 0.1
if 'startDate' in data and 'endDate' in data:
try:
if data['startDate'] and data['endDate']:
if str(data['startDate']) > str(data['endDate']):
consistency_score -= 0.15
except:
pass
if isinstance(data, dict):
for key, value in data.items():
if isinstance(value, list):
for item in value:
if isinstance(item, dict):
consistency_score *= self._check_consistency(item)
elif isinstance(value, dict):
consistency_score *= self._check_consistency(value)
return max(0.7, consistency_score)
def _generate_review_flags(self, field_scores: Dict[str, float], schema_compliance: float, overall_confidence: float, required_fields: List[str], extracted_data: Dict[str, Any], total_expected: int, extracted_count: int) -> List[str]:
flags = []
completeness_rate = extracted_count / total_expected if total_expected > 0 else 0
if completeness_rate < 0.5:
flags.append("incomplete_extraction")
elif completeness_rate < 0.8:
flags.append("partial_extraction")
if overall_confidence < 0.6:
flags.append("low_quality")
elif overall_confidence < 0.8:
flags.append("moderate_quality")
if schema_compliance < 0.7:
flags.append("schema_violations")
missing_required = [field for field in required_fields if field not in extracted_data or extracted_data[field] is None]
if missing_required:
flags.append(f"missing_required_fields")
empty_fields = [k for k, v in extracted_data.items() if v is None or v == ""]
if len(empty_fields) > total_expected * 0.3:
flags.append("many_empty_fields")
return flags
def _estimate_review_time(self, review_flags: List[str], field_scores: Dict[str, float]) -> int:
if not review_flags:
return 0
low_confidence_count = len([score for score in field_scores.values() if score < 0.7])
base_time = 5
field_time = low_confidence_count * 2
return min(base_time + field_time, 60)
class StructuredExtractionSystem:
def __init__(self, api_key: str):
self.schema_analyzer = SchemaAnalyzer()
self.document_processor = DocumentProcessor()
self.extraction_engine = ExtractionEngine(api_key)
self.quality_assessor = QualityAssessor()
async def extract_structured_data(
self,
content: str,
schema: Dict[str, Any],
options: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
start_time = datetime.now()
logger.info("Starting structured data extraction")
logger.info(f"Content length: {len(content)} characters")
complexity = self.schema_analyzer.analyze_complexity(schema)
logger.info(f"Schema complexity: Tier {complexity.complexity_tier}")
plan = self.schema_analyzer.create_extraction_plan(schema, complexity)
logger.info(f"Extraction plan: {len(plan.stages)} stages")
chunks = self.document_processor.process_document(content, schema)
logger.info(f"Document chunks: {len(chunks)}")
result = await self.extraction_engine.extract(chunks[0], plan, schema)
quality = self.quality_assessor.assess_extraction(result, schema)
processing_time = (datetime.now() - start_time).total_seconds()
logger.info(f"Extraction completed in {processing_time:.2f} seconds")
logger.info(f"Overall confidence: {quality.overall_confidence:.3f}")
return {
"data": result.data,
"confidence_scores": result.confidence_scores,
"overall_confidence": quality.overall_confidence,
"review_flags": quality.review_flags,
"extraction_metadata": {
"complexity_tier": complexity.complexity_tier,
"stages_executed": len(plan.stages),
"estimated_cost": plan.estimated_cost,
"actual_processing_time": processing_time,
"schema_compliance": quality.schema_compliance,
"recommended_review_time": quality.recommended_review_time
}
} |