Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,301 Bytes
79c5088 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import torch
import torch.nn.functional as F
import ctypes
import numpy as np
from einops import rearrange, repeat
from scipy.optimize import linear_sum_assignment
from typing import Optional, Union, Tuple, List, Callable, Dict
from model.modules.dift_utils import gen_nn_map
class AttentionBase:
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
def after_step(self):
pass
def __call__(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
sim: torch.Tensor,
attn: torch.Tensor,
is_cross: bool,
place_in_unet: str,
num_heads: int,
**kwargs
) -> torch.Tensor:
out = self.forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.after_step()
return out
def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
sim: torch.Tensor,
attn: torch.Tensor,
is_cross: bool,
place_in_unet: str,
num_heads: int,
**kwargs
) -> torch.Tensor:
out = torch.einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=num_heads)
return out
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
class DirectionalAttentionControl(AttentionBase):
MODEL_TYPE = {"SD": 16, "SDXL": 70}
def __init__(
self,
start_step: int = 4,
start_layer: int = 10,
layer_idx: Optional[List[int]] = None,
step_idx: Optional[List[int]] = None,
total_steps: int = 50,
model_type: str = "SD",
**kwargs
):
super().__init__()
self.total_steps = total_steps
self.total_layers = self.MODEL_TYPE.get(model_type, 16)
self.start_step = start_step
self.start_layer = start_layer
self.layer_idx = layer_idx if layer_idx is not None else list(range(start_layer, self.total_layers))
self.step_idx = step_idx if step_idx is not None else list(range(start_step, total_steps))
self.w = 1.0
self.structural_alignment = kwargs.get("structural_alignment", False)
self.style_transfer_only = kwargs.get("style_transfer_only", False)
self.alpha = kwargs.get("alpha", 0.5)
self.beta = kwargs.get("beta", 0.5)
self.newness = kwargs.get("support_new_object", True)
self.mode = kwargs.get("mode", "normal")
def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
sim: torch.Tensor,
attn: torch.Tensor,
is_cross: bool,
place_in_unet: str,
num_heads: int,
**kwargs
) -> torch.Tensor:
if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
q_s, q_middle, q_t = q.chunk(3)
k_s, k_middle, k_t = k.chunk(3)
v_s, v_middle, v_t = v.chunk(3)
attn_s, attn_middle, attn_t = attn.chunk(3)
out_s = self.attn_batch(q_s, k_s, v_s, sim, attn_s, is_cross, place_in_unet, num_heads, **kwargs)
out_middle = self.attn_batch(q_middle, k_middle, v_middle, sim, attn_middle, is_cross, place_in_unet, num_heads, **kwargs)
if self.cur_step <= 0 and self.beta > 0 and \
self.structural_alignment:
q_t = self.align_queries_via_matching(q_s, q_t, beta=self.beta)
out_t = self.apply_mode(q_t, k_s, k_t, v_s, v_t, attn_t, sim, is_cross, place_in_unet, num_heads, **kwargs)
out = torch.cat([out_s, out_middle, out_t], dim=0)
return out
def apply_mode(
self,
q_t: torch.Tensor,
k_s: torch.Tensor,
k_t: torch.Tensor,
v_s: torch.Tensor,
v_t: torch.Tensor,
attn_t: torch.Tensor,
sim: torch.Tensor,
is_cross: bool,
place_in_unet: str,
num_heads: int,
**kwargs
) -> torch.Tensor:
mode = self.mode
if 'dift' in mode and self.cur_step <= 0:
mode = 'normal'
if mode == "concat":
out_t = self.attn_batch(
q_t, torch.cat([k_s, 0.85 * k_t]), torch.cat([v_s, v_t]),
sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs
)
elif mode == "concat_dift":
updated_k_s, updated_v_s, _ = self.process_dift_features(kwargs.get("dift_features"), k_s, k_t, v_s, v_t)
out_t = self.attn_batch(
q_t, torch.cat([updated_k_s, k_t]), torch.cat([updated_v_s, v_t]),
sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs
)
elif mode == "masa":
out_t = self.attn_batch(q_t, k_s, v_s, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
elif mode == "normal":
out_t = self.attn_batch(q_t, k_t, v_t, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
elif mode == "lerp":
time = self.alpha
k_lerp = k_s + time * (k_t - k_s)
v_lerp = v_s + time * (v_t - v_s)
out_t = self.attn_batch(q_t, k_lerp, v_lerp, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
elif mode == "lerp_dift":
updated_k_s, updated_v_s, newness = self.process_dift_features(
kwargs.get("dift_features"), k_s, k_t, v_s, v_t, return_newness=self.newness
)
out_t = self.apply_lerp_dift(q_t, k_s, k_t, v_s, v_t, updated_k_s, updated_v_s, newness, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
elif mode in ("slerp", "log_slerp"):
time = self.alpha
k_slerp = self.slerp_fixed_length_batch(k_s, k_t, t=time)
v_slerp = self.slerp_batch(v_s, v_t, t=time, log_slerp="log" in mode)
out_t = self.attn_batch(q_t, k_slerp, v_slerp, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
elif mode in ("slerp_dift", "log_slerp_dift"):
out_t = self.apply_slerp_dift(q_t, k_s, k_t, v_s, v_t, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
else:
out_t = self.attn_batch(q_t, k_t, v_t, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
return out_t
def attn_batch(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
sim: torch.Tensor,
attn: torch.Tensor,
is_cross: bool,
place_in_unet: str,
num_heads: int,
**kwargs
) -> torch.Tensor:
b = q.shape[0] // num_heads
q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)
scale = kwargs.get("scale", 1.0)
sim_batched = torch.einsum("h i d, h j d -> h i j", q, k) * scale
attn_batched = sim_batched.softmax(-1)
out = torch.einsum("h i j, h j d -> h i d", attn_batched, v)
out = rearrange(out, "h (b n) d -> b n (h d)", b=b)
return out
def slerp(self, x: torch.Tensor, y: torch.Tensor, t: float = 0.5) -> torch.Tensor:
x_norm = x.norm(p=2)
y_norm = y.norm(p=2)
if y_norm < 1e-12:
return x
y_normalized = y / y_norm
y_same_length = y_normalized * x_norm
dot_xy = (x * y_same_length).sum()
cos_theta = torch.clamp(dot_xy / (x_norm * x_norm), -1.0, 1.0)
theta = torch.acos(cos_theta)
if torch.isclose(theta, torch.tensor(0.0)):
return x
sin_theta = torch.sin(theta)
s1 = torch.sin((1.0 - t) * theta) / sin_theta
s2 = torch.sin(t * theta) / sin_theta
return s1 * x + s2 * y_same_length
def slerp_batch(
self,
x: torch.Tensor,
y: torch.Tensor,
t: float = 0.5,
eps: float = 1e-12,
log_slerp: bool = False
) -> torch.Tensor:
"""
Variation of SLERP for batches that allows for linear or logarithmic interpolation of magnitudes.
"""
x_norm = x.norm(p=2, dim=-1, keepdim=True)
y_norm = y.norm(p=2, dim=-1, keepdim=True)
y_zero_mask = (y_norm < eps)
x_unit = x / (x_norm + eps)
y_unit = y / (y_norm + eps)
dot_xy = (x_unit * y_unit).sum(dim=-1, keepdim=True)
cos_theta = torch.clamp(dot_xy, -1.0, 1.0)
theta = torch.acos(cos_theta)
sin_theta = torch.sin(theta)
theta_zero_mask = (theta.abs() < 1e-7)
sin_theta_safe = torch.where(sin_theta.abs() < eps, torch.ones_like(sin_theta), sin_theta)
s1 = torch.sin((1.0 - t) * theta) / sin_theta_safe
s2 = torch.sin(t * theta) / sin_theta_safe
dir_interp = s1 * x_unit + s2 * y_unit
if not log_slerp:
mag_interp = (1.0 - t) * x_norm + t * y_norm
else:
mag_interp = (x_norm ** (1.0 - t)) * (y_norm ** t)
out = mag_interp * dir_interp
out = torch.where(y_zero_mask | theta_zero_mask, x, out)
return out
def slerp_fixed_length_batch(
self,
x: torch.Tensor,
y: torch.Tensor,
t: float = 0.5,
eps: float = 1e-12
) -> torch.Tensor:
"""
performing SLERP while preserving the norm of the source tensor x
"""
x_norm = x.norm(p=2, dim=-1, keepdim=True)
y_norm = y.norm(p=2, dim=-1, keepdim=True)
y_zero_mask = (y_norm < eps)
y_normalized = y / (y_norm + eps)
y_same_length = y_normalized * x_norm
dot_xy = (x * y_same_length).sum(dim=-1, keepdim=True)
cos_theta = torch.clamp(dot_xy / (x_norm * x_norm + eps), -1.0, 1.0)
theta = torch.acos(cos_theta)
sin_theta = torch.sin(theta)
sin_theta_safe = torch.where(sin_theta.abs() < eps, torch.ones_like(sin_theta), sin_theta)
s1 = torch.sin((1.0 - t) * theta) / sin_theta_safe
s2 = torch.sin(t * theta) / sin_theta_safe
out = s1 * x + s2 * y_same_length
theta_zero_mask = (theta.abs() < 1e-7)
out = torch.where(y_zero_mask | theta_zero_mask, x, out)
return out
def apply_lerp_dift(
self,
q_t: torch.Tensor,
k_s: torch.Tensor,
k_t: torch.Tensor,
v_s: torch.Tensor,
v_t: torch.Tensor,
updated_k_s: torch.Tensor,
updated_v_s: torch.Tensor,
newness: torch.Tensor,
sim: torch.Tensor,
attn_t: torch.Tensor,
is_cross: bool,
place_in_unet: str,
num_heads: int,
**kwargs
) -> torch.Tensor:
alpha = self.alpha
k_lerp = k_s + alpha * (k_t - k_s)
v_lerp = v_s + alpha * (v_t - v_s)
if alpha > 0:
k_t_new = newness * k_t + (1 - newness) * k_lerp
v_t_new = newness * v_t + (1 - newness) * v_lerp
else:
k_t_new = k_s
v_t_new = v_s
out_t = self.attn_batch(q_t, k_t_new, v_t_new, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
return out_t
def apply_slerp_dift(
self,
q_t: torch.Tensor,
k_s: torch.Tensor,
k_t: torch.Tensor,
v_s: torch.Tensor,
v_t: torch.Tensor,
sim: torch.Tensor,
attn_t: torch.Tensor,
is_cross: bool,
place_in_unet: str,
num_heads: int,
**kwargs
) -> torch.Tensor:
updated_k_s, updated_v_s, newness = self.process_dift_features(
kwargs.get("dift_features"), k_s, k_t, v_s, v_t, return_newness=self.newness
)
alpha = self.alpha
log_slerp = "log" in self.mode
# Interpolate from k_t->updated_k_s so that if alpha=0, we get k_t
k_slerp = self.slerp_fixed_length_batch(k_t, updated_k_s, t=1-alpha)
v_slerp = self.slerp_batch(v_t, updated_v_s, t=1-alpha, log_slerp=log_slerp)
if alpha > 0:
k_t_new = newness * k_t + (1 - newness) * k_slerp
v_t_new = newness * v_t + (1 - newness) * v_slerp
else:
k_t_new = k_s
v_t_new = v_s
out_t = self.attn_batch(q_t, k_t_new, v_t_new, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
return out_t
def process_dift_features(
self,
dift_features: torch.Tensor,
k_s: torch.Tensor,
k_t: torch.Tensor,
v_s: torch.Tensor,
v_t: torch.Tensor,
return_newness: bool = True
):
dift_s, _, dift_t = dift_features.chunk(3)
k_s1 = k_s.permute(0, 2, 1).reshape(k_s.shape[0], k_s.shape[2], int(k_s.shape[1]**0.5), -1)
v_s1 = v_s.permute(0, 2, 1).reshape(v_s.shape[0], v_s.shape[2], int(v_s.shape[1]**0.5), -1)
k_s1 = k_s1.reshape(-1, k_s1.shape[-2], k_s1.shape[-1])
v_s1 = v_s1.reshape(-1, v_s1.shape[-2], v_s1.shape[-1])
################# uncomment only for visualization #################
# result = gen_nn_map(
# [dift_s[0], dift_s[0]],
# dift_s[0],
# dift_t[0],
# kernel_size=1,
# stride=1,
# device=k_s.device,
# timestep=self.cur_step,
# visualize=True,
# return_newness=return_newness
# )
#####################################################################
resized_src = F.interpolate(dift_s[0].unsqueeze(0), size=k_s1.shape[-1], mode='bilinear', align_corners=False).squeeze(0)
resized_tgt = F.interpolate(dift_t[0].unsqueeze(0), size=k_s1.shape[-1], mode='bilinear', align_corners=False).squeeze(0)
result = gen_nn_map(
[k_s1, v_s1],
resized_src,
resized_tgt,
kernel_size=1,
stride=1,
device=k_s.device,
timestep=self.cur_step,
return_newness=return_newness
)
if return_newness:
updated_k_s, updated_v_s, newness = result
else:
updated_k_s, updated_v_s = result
newness = torch.zeros_like(updated_k_s[:1]).to(k_s.device)
newness = newness.view(-1).unsqueeze(0).unsqueeze(-1)
updated_k_s = updated_k_s.reshape(k_s.shape[0], k_s.shape[2], -1).permute(0, 2, 1)
updated_v_s = updated_v_s.reshape(v_s.shape[0], v_s.shape[2], -1).permute(0, 2, 1)
return updated_k_s, updated_v_s, newness
def sinkhorn(self, cost_matrix, max_iter=50, epsilon=1e-8):
n, m = cost_matrix.shape
K = torch.exp(-cost_matrix / cost_matrix.std()) # Kernelized cost matrix
u = torch.ones(n, device=cost_matrix.device) / n
v = torch.ones(m, device=cost_matrix.device) / m
for _ in range(max_iter):
u_prev = u.clone()
u = 1.0 / (K @ v)
v = 1.0 / (K.T @ u)
if torch.max(torch.abs(u - u_prev)) < epsilon:
break
P = torch.diag(u) @ K @ torch.diag(v)
return P
def align_queries_via_matching(self, q_s: torch.Tensor, q_t: torch.Tensor, beta: float = 0.5, device: str = "cuda"):
q_s = q_s.to(device)
q_t = q_t.to(device)
B, _, _ = q_s.shape
q_t_updated = torch.zeros_like(q_t, device=device)
for b in range(B):
########################### L2 ##############################
# cost_matrix1 = (q_s[b].unsqueeze(1) - q_t[b].unsqueeze(0)).pow(2).sum(dim=-1)
######################### cosine ############################
cost_matrix1 = - F.cosine_similarity(
q_s[b].unsqueeze(1), q_t[b].unsqueeze(0), dim=-1)
#############################################################
# cost_matrix2 = (q_t[b].unsqueeze(1) - q_t[b].unsqueeze(0)).pow(2).sum(dim=-1)
cost_matrix2 = torch.abs(torch.arange(q_t[b].shape[0], device=device).unsqueeze(0) -
torch.arange(q_t[b].shape[0], device=device).unsqueeze(1)).float()
cost_matrix2 = cost_matrix2 ** 0.5
# cost_matrix2 = torch.where(cost_matrix2 > 0, 1.0, 0.0)
mean1 = cost_matrix1.mean()
std1 = cost_matrix1.std()
mean2 = cost_matrix2.mean()
std2 = cost_matrix2.std()
cost_func_1_std = (cost_matrix1 - mean1) / (std1 + 1e-8)
cost_func_2_std = (cost_matrix2 - mean2) / (std2 + 1e-8)
cost_matrix = beta * cost_func_1_std + (1.0 - beta) * cost_func_2_std
cost_np = cost_matrix.detach().cpu().numpy()
row_ind, col_ind = linear_sum_assignment(cost_np)
q_t_updated[b] = q_t[b][col_ind]
# P = self.sinkhorn(cost_matrix)
# col_ind = P.argmax(dim=1)
# idea 1
# q_t_updated[b] = q_t[b][col_ind]
# idea 2
# q_t_updated[b] = P @ q_t[b]
return q_t_updated
|