Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,801 Bytes
79c5088 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import os
import math
import torch
import torch.nn.functional as F
import numpy as np
from typing import List
from sklearn.decomposition import PCA
from typing import Optional, Tuple
from PIL import Image
from model.modules.new_object_detection import *
class DIFTLatentStore:
def __init__(self, steps: List[int], up_ft_indices: List[int]):
self.steps = steps
self.up_ft_indices = up_ft_indices
self.dift_features = {}
self.smoothed_dift_features = {}
def __call__(self, features: torch.Tensor, t: int, layer_index: int):
if t in self.steps and layer_index in self.up_ft_indices:
self.dift_features[f'{int(t)}_{layer_index}'] = features
def smooth(self, kernel_size=3, sigma=1):
for key, value in self.dift_features.items():
if key not in self.smoothed_dift_features:
self.smoothed_dift_features[key] = torch.stack([gaussian_smooth(x, kernel_size=kernel_size, sigma=sigma) for x in value], dim=0)
def copy(self):
copy_dift = DIFTLatentStore(self.steps, self.up_ft_indices)
for key, value in self.dift_features.items():
copy_dift.dift_features[key] = value.clone()
return copy_dift
def reset(self):
self.dift_features = {}
self.smoothed_dift_features = {}
def gaussian_smooth(input_tensor, kernel_size=3, sigma=1):
kernel = np.fromfunction(
lambda x, y: (1/ (2 * np.pi * sigma ** 2)) *
np.exp(-((x - (kernel_size - 1) / 2) ** 2 + (y - (kernel_size - 1) / 2) ** 2) / (2 * sigma ** 2)),
(kernel_size, kernel_size)
)
kernel = torch.Tensor(kernel / kernel.sum()).to(input_tensor.dtype).to(input_tensor.device)
kernel = kernel.unsqueeze(0).unsqueeze(0)
smoothed_slices = []
for i in range(input_tensor.size(0)):
slice_tensor = input_tensor[i, :, :]
slice_tensor = F.conv2d(slice_tensor.unsqueeze(0).unsqueeze(0), kernel, padding=kernel_size // 2)[0, 0]
smoothed_slices.append(slice_tensor)
smoothed_tensor = torch.stack(smoothed_slices, dim=0)
return smoothed_tensor
def cos_dist(a, b):
a_norm = F.normalize(a, dim=-1)
b_norm = F.normalize(b, dim=-1)
res = a_norm @ b_norm.T
return 1 - res
def extract_patches(feature_map: torch.Tensor, patch_size: int, stride: int) -> torch.Tensor:
# feature_map is (C, H, W). Unfold requires (B, C, H, W).
feature_map = feature_map.unsqueeze(0) # (1, C, H, W)
# Unfold: output shape will be (B, C * patch_size^2, num_patches)
patches = F.unfold(
feature_map,
kernel_size=patch_size,
stride=stride
)
# Now patches is (1, C*patch_size^2, num_patches)
# Transpose to get shape (num_patches, C*patch_size^2)
patches = patches.squeeze(0).transpose(0, 1) # (num_patches, C*patch_size^2)
return patches
def reassemble_patches(
patches: torch.Tensor,
out_shape: Tuple[int, int, int],
patch_size: int,
stride: int
) -> torch.Tensor:
C, H, W = out_shape
# 1) Convert from (num_patches, C*patch_size^2) to (B=1, C*patch_size^2, num_patches)
patches_4d = patches.transpose(0, 1).unsqueeze(0) # (1, C*patch_size^2, num_patches)
# 2) fold: reassemble patches to (1, C, H, W)
reassembled = F.fold(
patches_4d,
output_size=(H, W),
kernel_size=patch_size,
stride=stride
)
# 3) Create a divisor mask to account for overlapping regions.
# We do this by folding a "ones" tensor of the same shape as patches_4d.
ones_input = torch.ones_like(patches_4d)
overlap_count = F.fold(
ones_input,
output_size=(H, W),
kernel_size=patch_size,
stride=stride
)
# 4) Divide to normalize overlapping areas
reassembled = reassembled / overlap_count.clamp_min(1e-8)
# 5) Remove the batch dimension -> (C, H, W)
reassembled = reassembled.squeeze(0)
return reassembled
def calculate_patch_distance(index1: int, index2: int, grid_size: int, stride: int, patch_size: int) -> float:
row1, col1 = index1 // grid_size, index1 % grid_size
row2, col2 = index2 // grid_size, index2 % grid_size
# print('row1, col1:', row1, col1)
x_center1, y_center1 = (row1 * stride) + (patch_size / 2), (col1 * stride) + (patch_size / 2)
x_center2, y_center2 = (row2 * stride) + (patch_size / 2), (col2 * stride) + (patch_size / 2)
return math.sqrt((x_center2 - x_center1)**2 + (y_center2 - y_center1)**2)
def gen_nn_map(
latent,
src_features,
tgt_features,
device,
kernel_size=3,
stride=1,
return_newness=False,
**kwargs
):
batch_size = kwargs.get("batch_size", None)
timestep = kwargs.get("timestep", None)
if kwargs.get("visualize", False):
dift_visualization(src_features, tgt_features, filename_out=f"output/feat_colors_{timestep}.png")
src_patches = extract_patches(src_features, kernel_size, stride)
tgt_patches = extract_patches(tgt_features, kernel_size, stride)
if isinstance(latent, list):
latent_patches = [extract_patches(l, kernel_size, stride) for l in latent]
else:
latent_patches = extract_patches(latent, kernel_size, stride)
num_tgt = src_patches.size(0)
batch = batch_size or num_tgt
nearest_neighbor_indices = torch.empty(num_tgt, dtype=torch.long, device=device)
nearest_neighbor_distances = torch.empty(num_tgt, dtype=torch.long, device=device)
dist_chunks = []
for start in range(0, num_tgt, batch):
sims = cos_dist(src_patches, tgt_patches[start : start + batch])
dist_chunks.append(sims)
min_distances, best_idx = sims.min(0)
nearest_neighbor_indices[start : start + batch] = best_idx
nearest_neighbor_distances[start : start + batch] = min_distances
if not isinstance(latent, list):
aligned_latent = latent_patches[nearest_neighbor_indices]
aligned_latent = reassemble_patches(aligned_latent, latent.shape, kernel_size, stride)
else:
aligned_latent = [latent_patches[i][nearest_neighbor_indices] for i in range(len(latent_patches))]
aligned_latent = [reassemble_patches(l, latent[0].shape, kernel_size, stride) for l in aligned_latent]
if return_newness:
dist_matrix = torch.cat(dist_chunks, dim=0)
newness_method = 'two_sided'
# newness_method = 'distance'
if newness_method.lower() == "distance":
newness = detect_newness_distance(nearest_neighbor_distances, quantile=0.97)
elif newness_method.lower() == "two_sided":
newness = detect_newness_two_sided(dist_matrix, k=4)
out_shape = latent[0].shape if isinstance(latent, list) else latent.shape
out_shape = (1, out_shape[1], out_shape[2])
newness = reassemble_patches(newness.unsqueeze(-1), out_shape, kernel_size, stride)
del src_patches, tgt_patches, latent_patches, nearest_neighbor_indices, nearest_neighbor_distances
################## visualization of changing source features to match target ##################
if False:
updated_src_patches = src_patches[nearest_neighbor_indices]
updated_src_patches = reassemble_patches(updated_src_patches, src_features.shape, kernel_size, stride)
dift_visualization(
updated_src_patches, tgt_features,
filename_out=f"output/updated_feat_colors_{timestep}.png",
)
if return_newness:
if isinstance(aligned_latent, list):
aligned_latent.append(newness)
else:
return aligned_latent, newness
return aligned_latent
def dift_visualization(
src_feature: torch.Tensor,
tgt_feature: torch.Tensor,
filename_out: str,
resize_to: Optional[Tuple[int, int]] = (512, 512)
):
"""
Flatten features, apply PCA for 3D embedding, normalize for RGB, then reshape and save as image
"""
C, H_s, W_s = src_feature.shape
_, H_t, W_t = tgt_feature.shape
src_flat = src_feature.permute(1, 2, 0).reshape(-1, C) # (H_s*W_s, C)
tgt_flat = tgt_feature.permute(1, 2, 0).reshape(-1, C) # (H_t*W_t, C)
all_features = torch.cat([src_flat, tgt_flat], dim=0) # shape: (N_total, C)
all_features_np = all_features.detach().cpu().numpy()
num_components = 3
pca = PCA(n_components=num_components)
all_features_3d = pca.fit_transform(all_features_np) # shape: (N_total, 3)
# 6) Normalize each dimension to [0,1]
def normalize_to_01(array_2d):
min_vals = array_2d.min(axis=0)
max_vals = array_2d.max(axis=0)
denom = (max_vals - min_vals) + 1e-8
return (array_2d - min_vals) / denom
all_features_rgb = normalize_to_01(all_features_3d)
N_src = H_s * W_s
src_rgb_flat = all_features_rgb[:N_src] # (N_src, 3)
tgt_rgb_flat = all_features_rgb[N_src:] # (N_tgt, 3)
src_color_map = src_rgb_flat.reshape(H_s, W_s, 3)
tgt_color_map = tgt_rgb_flat.reshape(H_t, W_t, 3)
src_img = Image.fromarray((src_color_map * 255).astype(np.uint8))
tgt_img = Image.fromarray((tgt_color_map * 255).astype(np.uint8))
src_img_resized = src_img.resize(resize_to, Image.Resampling.LANCZOS)
tgt_img_resized = tgt_img.resize(resize_to, Image.Resampling.LANCZOS)
combined_width = resize_to[0] * 2
combined_height = resize_to[1]
combined_img = Image.new("RGB", (combined_width, combined_height))
combined_img.paste(src_img_resized, (0, 0))
combined_img.paste(tgt_img_resized, (resize_to[0], 0))
os.makedirs(os.path.dirname(filename_out), exist_ok=True)
combined_img.save(filename_out)
print(f"Saved visualization to {filename_out}")
|