Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,262 Bytes
12f2db2 e7d3385 12f2db2 d7950f8 12f2db2 ec5e01d 12f2db2 ec5e01d 12f2db2 d7950f8 12f2db2 ec5e01d 12f2db2 d7950f8 12f2db2 47315b7 12f2db2 ec5e01d 12f2db2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
import os
import spaces
import torch
import gradio as gr
import tempfile
import subprocess
import sys
from pathlib import Path
import datetime
import math
import random
import gc
import json
import numpy as np
from PIL import Image
from moviepy import *
import librosa
from omegaconf import OmegaConf
from transformers import AutoTokenizer, Wav2Vec2Model, Wav2Vec2Processor
from diffusers import FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download, snapshot_download
def setup_repository():
if not os.path.exists("echomimic_v3"):
print("π Cloning EchoMimicV3 repository...")
subprocess.run([
"git", "clone",
"https://github.com/antgroup/echomimic_v3.git"
], check=True)
print("β
Repository cloned successfully")
sys.path.insert(0, "echomimic_v3")
print("β
Repository added to Python path")
def download_models():
print("π₯ Downloading models...")
os.makedirs("models", exist_ok=True)
try:
print("π Downloading base model...")
base_model_path = snapshot_download(
repo_id="alibaba-pai/Wan2.1-Fun-V1.1-1.3B-InP",
local_dir="models/Wan2.1-Fun-V1.1-1.3B-InP",
local_dir_use_symlinks=False
)
print(f"β
Base model downloaded to: {base_model_path}")
print("π Downloading EchoMimicV3 transformer...")
os.makedirs("models/transformer", exist_ok=True)
transformer_file = hf_hub_download(
repo_id="BadToBest/EchoMimicV3",
filename="transformer/diffusion_pytorch_model.safetensors",
local_dir="models",
local_dir_use_symlinks=False
)
print(f"β
Transformer downloaded to: {transformer_file}")
config_file = hf_hub_download(
repo_id="BadToBest/EchoMimicV3",
filename="transformer/config.json",
local_dir="models",
local_dir_use_symlinks=False
)
print(f"β
Config downloaded to: {config_file}")
print("π Downloading Wav2Vec model...")
wav2vec_path = snapshot_download(
repo_id="facebook/wav2vec2-base-960h",
local_dir="models/wav2vec2-base-960h",
local_dir_use_symlinks=False
)
print(f"β
Wav2Vec model downloaded to: {wav2vec_path}")
print("β
All models downloaded successfully!")
return True
except Exception as e:
print(f"β Error downloading models: {e}")
return False
def download_examples():
print("π Downloading example files...")
os.makedirs("examples", exist_ok=True)
try:
example_files = [
"datasets/echomimicv3_demos/imgs/demo_ch_woman_04.png",
"datasets/echomimicv3_demos/audios/demo_ch_woman_04.WAV",
"datasets/echomimicv3_demos/prompts/demo_ch_woman_04.txt",
"datasets/echomimicv3_demos/imgs/guitar_woman_01.png",
"datasets/echomimicv3_demos/audios/guitar_woman_01.WAV",
"datasets/echomimicv3_demos/prompts/guitar_woman_01.txt"
]
repo_url = "https://github.com/antgroup/echomimic_v3/raw/main/"
for file_path in example_files:
try:
import urllib.request
filename = os.path.basename(file_path)
local_path = f"examples/{filename}"
if not os.path.exists(local_path):
print(f"π Downloading {filename}...")
urllib.request.urlretrieve(f"{repo_url}{file_path}", local_path)
print(f"β
Downloaded {filename}")
else:
print(f"β
{filename} already exists")
except Exception as e:
print(f"β οΈ Could not download {filename}: {e}")
print("β
Example files downloaded!")
return True
except Exception as e:
print(f"β Error downloading examples: {e}")
return False
setup_repository()
from src.dist import set_multi_gpus_devices
from src.wan_vae import AutoencoderKLWan
from src.wan_image_encoder import CLIPModel
from src.wan_text_encoder import WanT5EncoderModel
from src.wan_transformer3d_audio import WanTransformerAudioMask3DModel
from src.pipeline_wan_fun_inpaint_audio import WanFunInpaintAudioPipeline
from src.utils import filter_kwargs, get_image_to_video_latent3, save_videos_grid
from src.fm_solvers import FlowDPMSolverMultistepScheduler
from src.fm_solvers_unipc import FlowUniPCMultistepScheduler
from src.cache_utils import get_teacache_coefficients
from src.face_detect import get_mask_coord
class ComprehensiveConfig:
def __init__(self):
self.ulysses_degree = 1
self.ring_degree = 1
self.fsdp_dit = False
self.config_path = "echomimic_v3/config/config.yaml"
self.model_name = "models/Wan2.1-Fun-V1.1-1.3B-InP"
self.transformer_path = "models/transformer/diffusion_pytorch_model.safetensors"
self.wav2vec_model_dir = "models/wav2vec2-base-960h"
self.weight_dtype = torch.bfloat16
self.sample_size = [768, 768]
self.sampler_name = "Flow_DPM++"
self.lora_weight = 1.0
config = ComprehensiveConfig()
pipeline = None
wav2vec_processor = None
wav2vec_model = None
def load_wav2vec_models(wav2vec_model_dir):
print(f"π Loading Wav2Vec models from {wav2vec_model_dir}...")
try:
processor = Wav2Vec2Processor.from_pretrained(wav2vec_model_dir)
model = Wav2Vec2Model.from_pretrained(wav2vec_model_dir).eval()
model.requires_grad_(False)
print("β
Wav2Vec models loaded successfully")
return processor, model
except Exception as e:
print(f"β Error loading Wav2Vec models: {e}")
raise
def extract_audio_features(audio_path, processor, model):
try:
sr = 16000
audio_segment, sample_rate = librosa.load(audio_path, sr=sr)
input_values = processor(audio_segment, sampling_rate=sample_rate, return_tensors="pt").input_values
input_values = input_values.to(model.device)
with torch.no_grad():
features = model(input_values).last_hidden_state
return features.squeeze(0)
except Exception as e:
print(f"β Error extracting audio features: {e}")
raise
def get_sample_size(image, default_size):
width, height = image.size
original_area = width * height
default_area = default_size[0] * default_size[1]
if default_area < original_area:
ratio = math.sqrt(original_area / default_area)
width = width / ratio // 16 * 16
height = height / ratio // 16 * 16
else:
width = width // 16 * 16
height = height // 16 * 16
return int(height), int(width)
def get_ip_mask(coords):
y1, y2, x1, x2, h, w = coords
Y, X = torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij')
mask = (Y.unsqueeze(-1) >= y1) & (Y.unsqueeze(-1) < y2) & (X.unsqueeze(-1) >= x1) & (X.unsqueeze(-1) < x2)
mask = mask.reshape(-1)
return mask.float()
def initialize_models():
global pipeline, wav2vec_processor, wav2vec_model, config
print("π Initializing EchoMimicV3 models...")
try:
if not download_models():
raise Exception("Failed to download required models")
download_examples()
device = set_multi_gpus_devices(config.ulysses_degree, config.ring_degree)
print(f"β
Device set to: {device}")
cfg = OmegaConf.load(config.config_path)
print(f"β
Config loaded from {config.config_path}")
print("π Loading transformer...")
transformer = WanTransformerAudioMask3DModel.from_pretrained(
os.path.join(config.model_name, cfg['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
transformer_additional_kwargs=OmegaConf.to_container(cfg['transformer_additional_kwargs']),
torch_dtype=config.weight_dtype,
)
if config.transformer_path is not None and os.path.exists(config.transformer_path):
print(f"π Loading custom transformer weights from {config.transformer_path}...")
from safetensors.torch import load_file
state_dict = load_file(config.transformer_path)
state_dict = state_dict.get("state_dict", state_dict)
missing, unexpected = transformer.load_state_dict(state_dict, strict=False)
print(f"β
Custom transformer weights loaded - Missing: {len(missing)}, Unexpected: {len(unexpected)}")
print("π Loading VAE...")
vae = AutoencoderKLWan.from_pretrained(
os.path.join(config.model_name, cfg['vae_kwargs'].get('vae_subpath', 'vae')),
additional_kwargs=OmegaConf.to_container(cfg['vae_kwargs']),
).to(config.weight_dtype)
print("β
VAE loaded")
print("π Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
os.path.join(config.model_name, cfg['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
)
print("β
Tokenizer loaded")
print("π Loading text encoder...")
text_encoder = WanT5EncoderModel.from_pretrained(
os.path.join(config.model_name, cfg['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
additional_kwargs=OmegaConf.to_container(cfg['text_encoder_kwargs']),
torch_dtype=config.weight_dtype,
).eval()
print("β
Text encoder loaded")
print("π Loading CLIP image encoder...")
clip_image_encoder = CLIPModel.from_pretrained(
os.path.join(config.model_name, cfg['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
).to(config.weight_dtype).eval()
print("β
CLIP image encoder loaded")
print("π Loading scheduler...")
scheduler_cls_map = {
"Flow": FlowMatchEulerDiscreteScheduler,
"Flow_Unipc": FlowUniPCMultistepScheduler,
"Flow_DPM++": FlowDPMSolverMultistepScheduler,
}
scheduler_cls = scheduler_cls_map.get(config.sampler_name, FlowDPMSolverMultistepScheduler)
scheduler = scheduler_cls(**filter_kwargs(scheduler_cls, OmegaConf.to_container(cfg['scheduler_kwargs'])))
print("β
Scheduler loaded")
print("π Creating pipeline...")
pipeline = WanFunInpaintAudioPipeline(
transformer=transformer,
vae=vae,
tokenizer=tokenizer,
text_encoder=text_encoder,
scheduler=scheduler,
clip_image_encoder=clip_image_encoder,
)
pipeline.to(device=device)
if torch.__version__ >= "2.0":
print("π Compiling the pipeline with torch.compile()...")
pipeline.transformer = torch.compile(pipeline.transformer, mode="reduce-overhead", fullgraph=True)
print("β
Pipeline transformer compiled!")
print("β
Pipeline created and moved to device")
print("π Loading Wav2Vec models...")
wav2vec_processor, wav2vec_model = load_wav2vec_models(config.wav2vec_model_dir)
wav2vec_model.to(device)
print("β
Wav2Vec models loaded")
print("π All models initialized successfully!")
return True
except Exception as e:
print(f"β Model initialization failed: {str(e)}")
import traceback
traceback.print_exc()
return False
@spaces.GPU(duration=120)
def generate_video(
image_path,
audio_path,
prompt,
negative_prompt,
seed_param,
num_inference_steps,
guidance_scale,
audio_guidance_scale,
fps,
partial_video_length,
overlap_video_length,
neg_scale,
neg_steps,
use_dynamic_cfg,
use_dynamic_acfg,
sampler_name,
shift,
audio_scale,
use_un_ip_mask,
enable_teacache,
teacache_threshold,
teacache_offload,
num_skip_start_steps,
enable_riflex,
riflex_k,
progress=gr.Progress(track_tqdm=True)
):
global pipeline, wav2vec_processor, wav2vec_model, config
progress(0, desc="Starting video generation...")
if image_path is None:
raise gr.Error("Please upload an image")
if audio_path is None:
raise gr.Error("Please upload an audio file")
if not models_ready or pipeline is None:
raise gr.Error("Models not initialized. Please restart the space.")
device = pipeline.device
if seed_param < 0:
seed = random.randint(0, np.iinfo(np.int32).max)
else:
seed = int(seed_param)
print(f"π² Using seed: {seed}")
try:
generator = torch.Generator(device=device).manual_seed(seed)
ref_img_pil = Image.open(image_path).convert("RGB")
print(f"πΈ Image loaded: {ref_img_pil.size}")
progress(0.1, desc="Detecting face...")
try:
y1, y2, x1, x2, h_, w_ = get_mask_coord(image_path)
print("β
Face detection successful")
except Exception as e:
print(f"β οΈ Face detection failed: {e}, using center crop")
h_, w_ = ref_img_pil.size[1], ref_img_pil.size[0]
y1, y2 = h_ // 4, 3 * h_ // 4
x1, x2 = w_ // 4, 3 * w_ // 4
progress(0.2, desc="Processing audio...")
audio_clip = AudioFileClip(audio_path)
audio_features = extract_audio_features(audio_path, wav2vec_processor, wav2vec_model)
audio_embeds = audio_features.unsqueeze(0).to(device=device, dtype=config.weight_dtype)
progress(0.25, desc="Encoding prompts...")
prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt(
prompt,
device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=(guidance_scale > 1.0),
negative_prompt=negative_prompt
)
video_length = int(audio_clip.duration * fps)
video_length = (
int((video_length - 1) // pipeline.vae.config.temporal_compression_ratio * pipeline.vae.config.temporal_compression_ratio) + 1
if video_length != 1 else 1
)
print(f"π₯ Total video length: {video_length} frames")
sample_height, sample_width = get_sample_size(ref_img_pil, config.sample_size)
print(f"π Sample size: {sample_width}x{sample_height}")
downratio = math.sqrt(sample_height * sample_width / h_ / w_)
coords = (
y1 * downratio // 16, y2 * downratio // 16,
x1 * downratio // 16, x2 * downratio // 16,
sample_height // 16, sample_width // 16,
)
ip_mask = get_ip_mask(coords).unsqueeze(0)
ip_mask = torch.cat([ip_mask]*3).to(device=device, dtype=config.weight_dtype)
if enable_riflex:
latent_frames = (video_length - 1) // pipeline.vae.config.temporal_compression_ratio + 1
pipeline.transformer.enable_riflex(k=riflex_k, L_test=latent_frames)
if enable_teacache:
try:
coefficients = get_teacache_coefficients(config.model_name)
if coefficients:
pipeline.transformer.enable_teacache(
coefficients, num_inference_steps, teacache_threshold,
num_skip_start_steps=num_skip_start_steps,
offload=teacache_offload
)
print("β
TeaCache enabled for this run")
except Exception as e:
print(f"β οΈ Could not enable TeaCache: {e}")
init_frames = 0
new_sample = None
ref_img_for_loop = ref_img_pil
total_chunks = math.ceil(video_length / (partial_video_length - overlap_video_length)) if video_length > partial_video_length else 1
chunk_num = 0
while init_frames < video_length:
chunk_num += 1
progress(0.3 + (0.6 * (chunk_num / total_chunks)), desc=f"Generating chunk {chunk_num}/{total_chunks}...")
current_partial_length = min(partial_video_length, video_length - init_frames)
current_partial_length = (
int((current_partial_length - 1) // pipeline.vae.config.temporal_compression_ratio * pipeline.vae.config.temporal_compression_ratio) + 1
if current_partial_length > 1 else 1
)
if current_partial_length <= 0:
break
input_video, input_video_mask, clip_image = get_image_to_video_latent3(
ref_img_for_loop, None, video_length=current_partial_length,
sample_size=[sample_height, sample_width]
)
audio_start_frame = init_frames * 2
audio_end_frame = (init_frames + current_partial_length) * 2
if audio_embeds.shape[1] < audio_end_frame:
repeat_times = (audio_end_frame // audio_embeds.shape[1]) + 1
audio_embeds = audio_embeds.repeat(1, repeat_times, 1)
partial_audio_embeds = audio_embeds[:, audio_start_frame:audio_end_frame]
with torch.no_grad():
sample = pipeline(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
num_frames=current_partial_length,
audio_embeds=partial_audio_embeds,
audio_scale=audio_scale,
ip_mask=ip_mask,
use_un_ip_mask=use_un_ip_mask,
height=sample_height,
width=sample_width,
generator=generator,
neg_scale=neg_scale,
neg_steps=neg_steps,
use_dynamic_cfg=use_dynamic_cfg,
use_dynamic_acfg=use_dynamic_acfg,
guidance_scale=guidance_scale,
audio_guidance_scale=audio_guidance_scale,
num_inference_steps=num_inference_steps,
video=input_video,
mask_video=input_video_mask,
clip_image=clip_image,
shift=shift,
).videos
if new_sample is None:
new_sample = sample
else:
mix_ratio = torch.linspace(0, 1, steps=overlap_video_length, device=device).view(1, 1, -1, 1, 1).to(new_sample.dtype)
new_sample[:, :, -overlap_video_length:] = (
new_sample[:, :, -overlap_video_length:] * (1 - mix_ratio) +
sample[:, :, :overlap_video_length] * mix_ratio
)
new_sample = torch.cat([new_sample, sample[:, :, overlap_video_length:]], dim=2)
if new_sample.shape[2] >= video_length:
break
ref_img_for_loop = [
Image.fromarray(
(new_sample[0, :, i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
) for i in range(-overlap_video_length, 0)
]
init_frames += current_partial_length - overlap_video_length
progress(0.9, desc="Stitching video and audio...")
final_sample = new_sample[:, :, :video_length]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
video_path = tmp_file.name
with tempfile.NamedTemporaryFile(suffix="_audio.mp4", delete=False) as tmp_file:
video_audio_path = tmp_file.name
save_videos_grid(final_sample, video_path, fps=fps)
video_clip_final = VideoFileClip(video_path)
audio_clip_trimmed = audio_clip.subclip(0, final_sample.shape[2] / fps)
final_video = video_clip_final.with_audio(audio_clip_trimmed)
final_video.write_videofile(video_audio_path, codec="libx264", audio_codec="aac", threads=4, logger=None)
video_clip_final.close()
audio_clip.close()
audio_clip_trimmed.close()
final_video.close()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
progress(1.0, desc="Generation complete!")
return video_audio_path, seed
except Exception as e:
print(f"β Generation error: {str(e)}")
import traceback
traceback.print_exc()
raise gr.Error(f"Generation failed: {str(e)}")
def create_demo():
with gr.Blocks(theme=gr.themes.Soft(), title="EchoMimicV3 Demo") as demo:
gr.Markdown("""
# π EchoMimicV3: Audio-Driven Human Animation
Transform a portrait photo into a talking video! Upload an image and an audio file to create lifelike, expressive animations. This demo showcases the power of the EchoMimicV3 model.
**Key Features:**
- π― **High-Quality Lip Sync:** Accurate mouth movements that match the input audio.
- π¨ **Natural Facial Expressions:** Generates subtle and natural facial emotions.
- π΅ **Speech & Singing:** Works with both spoken word and singing.
- β‘ **Efficient:** Powered by a compact 1.3B parameter model.
""")
if not models_ready:
gr.Warning("Models are still loading. The UI is disabled. Please wait and refresh the page if necessary.")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
label="πΈ Upload Portrait Image",
type="filepath",
sources=["upload"],
height=400,
)
audio_input = gr.Audio(
label="π΅ Upload Audio",
type="filepath",
sources=["upload"],
)
with gr.Accordion("π Text Prompts", open=True):
prompt = gr.Textbox(
label="βοΈ Prompt",
value="A person talking naturally with clear expressions.",
)
negative_prompt = gr.Textbox(
label="π« Negative Prompt",
value="Gesture is bad, unclear. Strange, twisted, bad, blurry hands and fingers.",
lines=2,
)
with gr.Column(scale=1):
video_output = gr.Video(
label="π₯ Generated Video",
interactive=False,
height=400
)
seed_output = gr.Number(
label="π² Used Seed",
interactive=False,
precision=0
)
with gr.Accordion("βοΈ Advanced Settings", open=False):
with gr.Row():
with gr.Column():
gr.Markdown("### Core Generation Parameters")
seed_param = gr.Number(label="π² Seed", value=-1, precision=0, info="-1 for random seed.")
num_inference_steps = gr.Slider(label="Inference Steps", minimum=5, maximum=50, value=20, step=1, info="More steps can improve quality but take longer. 15-25 is a good range.")
fps = gr.Slider(label="Frames Per Second (FPS)", minimum=10, maximum=30, value=25, step=1, info="Controls the smoothness of the output video.")
with gr.Column():
gr.Markdown("### Classifier-Free Guidance (CFG)")
guidance_scale = gr.Slider(label="Text Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=4.5, step=0.1, info="How strongly to follow the text prompt. Recommended: 3.0-6.0.")
audio_guidance_scale = gr.Slider(label="Audio Guidance Scale (aCFG)", minimum=1.0, maximum=10.0, value=2.5, step=0.1, info="How strongly to follow the audio for lip sync. Recommended: 2.0-3.0.")
use_dynamic_cfg = gr.Checkbox(label="Use Dynamic Text CFG", value=True, info="Gradually adjusts CFG during generation, can improve quality.")
use_dynamic_acfg = gr.Checkbox(label="Use Dynamic Audio aCFG", value=True, info="Gradually adjusts aCFG during generation, can improve quality.")
with gr.Row():
with gr.Column():
gr.Markdown("### Performance & VRAM (Chunking)")
partial_video_length = gr.Slider(label="Partial Video Length (Chunk Size)", minimum=49, maximum=161, value=113, step=16, info="Key for VRAM usage. 24G VRAM: ~113, 16G: ~81, 12G: ~49. Lower values use less memory but may affect consistency.")
overlap_video_length = gr.Slider(label="Overlap Length", minimum=4, maximum=16, value=8, step=1, info="How many frames to overlap between chunks for smooth transitions.")
with gr.Column():
gr.Markdown("### Sampler & Scheduler")
sampler_name = gr.Dropdown(label="Sampler", choices=["Flow", "Flow_Unipc", "Flow_DPM++"], value="Flow_DPM++", info="Algorithm for the diffusion process.")
shift = gr.Slider(label="Scheduler Shift", minimum=1.0, maximum=10.0, value=5.0, step=0.1, info="Adjusts the noise schedule. Optimal range depends on the sampler.")
audio_scale = gr.Slider(label="Audio Scale", minimum=0.5, maximum=2.0, value=1.0, step=0.1, info="Global scale for audio feature influence.")
use_un_ip_mask = gr.Checkbox(label="Use Un-IP Mask", value=False, info="Inverts the inpainting mask.")
with gr.Row():
with gr.Column():
gr.Markdown("### Negative Guidance (Advanced CFG)")
neg_scale = gr.Slider(label="Negative Scale", minimum=1.0, maximum=5.0, value=1.5, step=0.1, info="Strength of negative prompt in early steps.")
neg_steps = gr.Slider(label="Negative Steps", minimum=0, maximum=10, value=2, step=1, info="How many initial steps to apply the negative scale.")
with gr.Accordion("π¬ Experimental Settings", open=False):
with gr.Row():
with gr.Column():
gr.Markdown("### TeaCache (Performance Boost)")
enable_teacache = gr.Checkbox(label="Enable TeaCache", value=True)
teacache_threshold = gr.Slider(label="TeaCache Threshold", minimum=0.0, maximum=0.2, value=0.1, step=0.01)
teacache_offload = gr.Checkbox(label="TeaCache Offload", value=True)
with gr.Column():
gr.Markdown("### Riflex (Consistency)")
enable_riflex = gr.Checkbox(label="Enable Riflex", value=False)
riflex_k = gr.Slider(label="Riflex K", minimum=1, maximum=10, value=6, step=1)
with gr.Column():
gr.Markdown("### Other")
num_skip_start_steps = gr.Slider(label="Num Skip Start Steps", minimum=0, maximum=10, value=5, step=1)
generate_button = gr.Button(
"π¬ Generate Video",
variant='primary',
size="lg",
interactive=models_ready
)
all_inputs = [
image_input, audio_input, prompt, negative_prompt, seed_param,
num_inference_steps, guidance_scale, audio_guidance_scale, fps,
partial_video_length, overlap_video_length, neg_scale, neg_steps,
use_dynamic_cfg, use_dynamic_acfg, sampler_name, shift, audio_scale,
use_un_ip_mask, enable_teacache, teacache_threshold, teacache_offload,
num_skip_start_steps, enable_riflex, riflex_k
]
if models_ready:
generate_button.click(
fn=generate_video,
inputs=all_inputs,
outputs=[video_output, seed_output]
)
gr.Markdown("---")
gr.Markdown("### β¨ Click to Try Examples")
gr.Examples(
examples=[
[
"examples/demo_ch_woman_04.png",
"examples/demo_ch_woman_04.WAV",
"A Chinese woman is talking naturally.",
"bad gestures, blurry, distorted face",
42, 20, 4.5, 2.5, 25, 113, 8, 1.5, 2, True, True, "Flow_DPM++", 5.0, 1.0, False, True, 0.1, True, 5, False, 6
],
[
"examples/guitar_woman_01.png",
"examples/guitar_woman_01.WAV",
"A woman with glasses is singing and playing the guitar.",
"blurry, distorted face, bad hands",
123, 25, 5.0, 2.8, 25, 113, 8, 1.5, 2, True, True, "Flow_DPM++", 5.0, 1.0, False, True, 0.1, True, 5, False, 6
],
],
inputs=all_inputs,
outputs=[video_output, seed_output],
fn=generate_video,
cache_examples=True,
label=None,
)
gr.Markdown("---")
gr.Markdown("""
### π How to Use
1. **Upload Image:** Choose a clear portrait photo (front-facing works best).
2. **Upload Audio:** Add an audio file with clear speech or singing.
3. **Adjust Settings (Optional):** Fine-tune parameters in the advanced sections for different results. For memory issues, try lowering the "Partial Video Length".
4. **Generate:** Click the button and wait for your talking video!
**Note:** Generation time depends on settings and audio length. It can take a few minutes.
This demo is based on the [EchoMimicV3 repository](https://github.com/antgroup/echomimic_v3).
""")
return demo
if __name__ == "__main__":
print("π Starting model initialization...")
models_ready = initialize_models()
demo = create_demo()
demo.launch(share=True) |