File size: 7,869 Bytes
5e508ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
from torch import Tensor
import torch.nn as nn
from torch.nn import Conv2d
from torch.nn import functional as F
from torch.nn.modules.utils import _pair
from typing import Optional
from diffusers import StableDiffusionPipeline, DDPMScheduler
import diffusers
from PIL import Image
import gradio as gr
import spaces
import gc

def asymmetricConv2DConvForward_circular(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
    self.paddingX = (
        self._reversed_padding_repeated_twice[0],
        self._reversed_padding_repeated_twice[1],
        0,
        0
    )
    self.paddingY = (
        0,
        0,
        self._reversed_padding_repeated_twice[2],
        self._reversed_padding_repeated_twice[3]
    )
    working = F.pad(input, self.paddingX, mode="circular")
    working = F.pad(working, self.paddingY, mode="circular")
    return F.conv2d(working, weight, bias, self.stride, _pair(0), self.dilation, self.groups)

def make_seamless(model):
    for module in model.modules():
        if isinstance(module, torch.nn.Conv2d):
            if isinstance(module, diffusers.models.lora.LoRACompatibleConv) and module.lora_layer is None:
                module.lora_layer = lambda *x: 0
            module._conv_forward = asymmetricConv2DConvForward_circular.__get__(module, Conv2d)

def disable_seamless(model):
    for module in model.modules():
        if isinstance(module, torch.nn.Conv2d):
            if isinstance(module, diffusers.models.lora.LoRACompatibleConv) and module.lora_layer is None:
                module.lora_layer = lambda *x: 0
            module._conv_forward = nn.Conv2d._conv_forward.__get__(module, Conv2d)

def diffusion_callback(pipe, step_index, timestep, callback_kwargs):
    if step_index == int(pipe.num_timesteps * 0.8):
        make_seamless(pipe.unet)
        make_seamless(pipe.vae)
    if step_index < int(pipe.num_timesteps * 0.8):
        callback_kwargs["latents"] = torch.roll(callback_kwargs["latents"], shifts=(64, 64), dims=(2, 3))
    return callback_kwargs

print("Loading Pattern Diffusion model...")
pipe = StableDiffusionPipeline.from_pretrained(
    "Arrexel/pattern-diffusion",
    torch_dtype=torch.float16,
    safety_checker=None,
    requires_safety_checker=False
)
pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config)

if torch.cuda.is_available():
    pipe = pipe.to("cuda")
    pipe.enable_attention_slicing()
    pipe.enable_model_cpu_offload()
    print("Model loaded successfully on GPU with optimizations!")
else:
    print("GPU not available, using CPU")

@spaces.GPU(duration=40)
def generate_pattern(prompt, width=1024, height=1024, num_inference_steps=50, guidance_scale=7.5, seed=None):
    try:
        if torch.cuda.is_available():
            pipe.to("cuda")
        
        if seed is not None and seed != "":
            generator = torch.Generator(device=pipe.device).manual_seed(int(seed))
        else:
            generator = None
        
        disable_seamless(pipe.unet)
        disable_seamless(pipe.vae)
        
        with torch.autocast("cuda" if torch.cuda.is_available() else "cpu"):
            output = pipe(
                prompt=prompt,
                width=int(width),
                height=int(height),
                num_inference_steps=int(num_inference_steps),
                guidance_scale=guidance_scale,
                generator=generator,
                callback_on_step_end=diffusion_callback
            ).images[0]
        
        return output
        
    except Exception as e:
        print(f"Error during generation: {str(e)}")
        return None
    finally:
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()

def create_interface():
    with gr.Blocks(title="Pattern Diffusion - Seamless Pattern Generator") as demo:
        gr.Markdown("""
        # 🎨 Pattern Diffusion - Seamless Pattern Generator
        
        **Model:** [Arrexel/pattern-diffusion](https://huggingface.co/Arrexel/pattern-diffusion)
        
        This model specializes in generating patterns that can be repeated without visible seams, 
        ideal for prints, wallpapers, textiles, and surfaces.
        
        **Strengths:**
        - Excellent for floral and abstract patterns
        - Understands foreground and background colors well
        - Fast and efficient on VRAM
        
        **Limitations:**
        - Does not generate coherent text
        - Difficulty with anatomy of living creatures
        - Inconsistent geometry in simple geometric patterns
        """)
        
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(
                    label="Prompt", 
                    placeholder="Vibrant watercolor floral pattern with pink, purple, and blue flowers against a white background.",
                    lines=3,
                    value="Vibrant watercolor floral pattern with pink, purple, and blue flowers against a white background."
                )
                
                with gr.Row():
                    width = gr.Slider(
                        label="Width", 
                        minimum=256, 
                        maximum=1024, 
                        step=256, 
                        value=1024
                    )
                    height = gr.Slider(
                        label="Height", 
                        minimum=256, 
                        maximum=1024, 
                        step=256, 
                        value=1024
                    )
                
                with gr.Row():
                    steps = gr.Slider(
                        label="Inference Steps", 
                        minimum=20, 
                        maximum=100, 
                        step=5, 
                        value=50
                    )
                    guidance_scale = gr.Slider(
                        label="Guidance Scale", 
                        minimum=1.0, 
                        maximum=20.0, 
                        step=0.5, 
                        value=7.5
                    )
                
                seed = gr.Number(
                    label="Seed (optional, leave empty for random)", 
                    precision=0
                )
                
                generate_btn = gr.Button("🎨 Generate Pattern", variant="primary", size="lg")
            
            with gr.Column():
                output_image = gr.Image(
                    label="Generated Pattern", 
                    type="pil",
                    height=400
                )
        
        gr.Markdown("## πŸ“‹ Example Prompts")
        examples = [
            ["Vibrant watercolor floral pattern with pink, purple, and blue flowers against a white background."],
            ["Abstract geometric pattern with gold and navy blue triangles on cream background"],
            ["Delicate cherry blossom pattern with soft pink petals on light gray background"],
            ["Art deco pattern with emerald green and gold lines on black background"],
            ["Tropical leaves pattern with various shades of green on white background"],
            ["Vintage damask pattern in burgundy and cream colors"],
            ["Modern minimalist dots pattern in pastel colors"],
            ["Mandala-inspired pattern with intricate details in blue and white"]
        ]
        
        gr.Examples(
            examples=examples,
            inputs=[prompt],
            label="Click an example to use"
        )
        
        generate_btn.click(
            fn=generate_pattern,
            inputs=[prompt, width, height, steps, guidance_scale, seed],
            outputs=[output_image]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.queue(max_size=20).launch()