Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,7 @@ import spaces
|
|
| 10 |
import moviepy.editor as mp
|
| 11 |
import time
|
| 12 |
import langdetect
|
|
|
|
| 13 |
|
| 14 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 15 |
print("Starting the program...")
|
|
@@ -21,8 +22,17 @@ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float
|
|
| 21 |
model = model.eval()
|
| 22 |
print("Model successfully loaded.")
|
| 23 |
|
| 24 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
print(f"Downloading audio from YouTube: {url}")
|
|
|
|
| 26 |
ydl_opts = {
|
| 27 |
'format': 'bestaudio/best',
|
| 28 |
'postprocessors': [{
|
|
@@ -34,16 +44,13 @@ def download_youtube_audio(url, output_path):
|
|
| 34 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 35 |
ydl.download([url])
|
| 36 |
|
| 37 |
-
# Check if the file was renamed to .wav.wav
|
| 38 |
-
if os.path.exists(output_path + ".wav"):
|
| 39 |
-
os.rename(output_path + ".wav", output_path)
|
| 40 |
-
|
| 41 |
if os.path.exists(output_path):
|
| 42 |
print(f"Audio download completed. File saved at: {output_path}")
|
| 43 |
print(f"File size: {os.path.getsize(output_path)} bytes")
|
| 44 |
else:
|
| 45 |
print(f"Error: File {output_path} not found after download.")
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
@spaces.GPU(duration=60)
|
| 49 |
def transcribe_audio(file_path):
|
|
@@ -52,15 +59,15 @@ def transcribe_audio(file_path):
|
|
| 52 |
print("Video file detected. Extracting audio...")
|
| 53 |
try:
|
| 54 |
video = mp.VideoFileClip(file_path)
|
| 55 |
-
audio_path =
|
| 56 |
video.audio.write_audiofile(audio_path)
|
|
|
|
| 57 |
file_path = audio_path
|
| 58 |
except Exception as e:
|
| 59 |
print(f"Error extracting audio from video: {e}")
|
| 60 |
raise
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
output_file = "output.json"
|
| 64 |
command = [
|
| 65 |
"insanely-fast-whisper",
|
| 66 |
"--file-name", file_path,
|
|
@@ -73,84 +80,62 @@ def transcribe_audio(file_path):
|
|
| 73 |
print(f"Executing command: {' '.join(command)}")
|
| 74 |
try:
|
| 75 |
result = subprocess.run(command, check=True, capture_output=True, text=True)
|
| 76 |
-
print(f"Standard output: {result.stdout}")
|
| 77 |
-
print(f"Error output: {result.stderr}")
|
| 78 |
except subprocess.CalledProcessError as e:
|
| 79 |
print(f"Error running insanely-fast-whisper: {e}")
|
| 80 |
-
print(f"Standard output: {e.stdout}")
|
| 81 |
-
print(f"Error output: {e.stderr}")
|
| 82 |
raise
|
| 83 |
-
|
| 84 |
try:
|
| 85 |
with open(output_file, "r") as f:
|
| 86 |
transcription = json.load(f)
|
| 87 |
except json.JSONDecodeError as e:
|
| 88 |
print(f"Error decoding JSON: {e}")
|
| 89 |
-
print(f"File content: {open(output_file, 'r').read()}")
|
| 90 |
raise
|
|
|
|
| 91 |
if "text" in transcription:
|
| 92 |
result = transcription["text"]
|
| 93 |
else:
|
| 94 |
result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
| 98 |
return result
|
| 99 |
|
| 100 |
@spaces.GPU(duration=60)
|
| 101 |
def generate_summary_stream(transcription):
|
| 102 |
print("Starting summary generation...")
|
| 103 |
-
print(f"Transcription length: {len(transcription)} characters")
|
| 104 |
-
|
| 105 |
detected_language = langdetect.detect(transcription)
|
| 106 |
|
| 107 |
prompt = f"""Summarize the following video transcription in 150-300 words.
|
| 108 |
The summary should be in the same language as the transcription, which is detected as {detected_language}.
|
| 109 |
Please ensure that the summary captures the main points and key ideas of the transcription:
|
| 110 |
|
| 111 |
-
{transcription[:
|
| 112 |
|
| 113 |
response, history = model.chat(tokenizer, prompt, history=[])
|
| 114 |
print(f"Final summary generated: {response[:100]}...")
|
| 115 |
-
print("Summary generation completed.")
|
| 116 |
return response
|
| 117 |
|
| 118 |
def process_youtube(url):
|
| 119 |
if not url:
|
| 120 |
-
print("YouTube URL not provided.")
|
| 121 |
return "Please enter a YouTube URL.", None
|
| 122 |
-
print(f"Processing YouTube URL: {url}")
|
| 123 |
-
audio_file = "youtube_audio.wav"
|
| 124 |
try:
|
| 125 |
-
download_youtube_audio(url
|
| 126 |
-
# Check if the file was renamed to .wav.wav
|
| 127 |
-
if os.path.exists(audio_file + ".wav"):
|
| 128 |
-
audio_file = audio_file + ".wav"
|
| 129 |
-
if not os.path.exists(audio_file):
|
| 130 |
-
raise FileNotFoundError(f"File {audio_file} does not exist after download.")
|
| 131 |
-
print(f"Audio file found: {audio_file}")
|
| 132 |
-
print("Starting transcription...")
|
| 133 |
transcription = transcribe_audio(audio_file)
|
| 134 |
-
print(f"Transcription completed. Length: {len(transcription)} characters")
|
| 135 |
return transcription, None
|
| 136 |
except Exception as e:
|
| 137 |
-
print(f"Error processing YouTube: {e}")
|
| 138 |
return f"Processing error: {str(e)}", None
|
| 139 |
finally:
|
| 140 |
-
|
| 141 |
-
os.remove(audio_file)
|
| 142 |
-
print(f"Directory content after processing: {os.listdir('.')}")
|
| 143 |
|
| 144 |
def process_uploaded_video(video_path):
|
| 145 |
-
print(f"Processing uploaded video: {video_path}")
|
| 146 |
try:
|
| 147 |
-
print("Starting transcription...")
|
| 148 |
transcription = transcribe_audio(video_path)
|
| 149 |
-
print(f"Transcription completed. Length: {len(transcription)} characters")
|
| 150 |
return transcription, None
|
| 151 |
except Exception as e:
|
| 152 |
-
print(f"Error processing video: {e}")
|
| 153 |
return f"Processing error: {str(e)}", None
|
|
|
|
|
|
|
| 154 |
|
| 155 |
print("Setting up Gradio interface...")
|
| 156 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
@@ -193,9 +178,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 193 |
def process_video_and_update(video):
|
| 194 |
if video is None:
|
| 195 |
return "No video uploaded.", "Please upload a video."
|
| 196 |
-
print(f"Video received: {video}")
|
| 197 |
transcription, _ = process_uploaded_video(video)
|
| 198 |
-
print(f"Returned transcription: {transcription[:100] if transcription else 'No transcription generated'}...")
|
| 199 |
return transcription or "Transcription error", ""
|
| 200 |
|
| 201 |
video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output])
|
|
|
|
| 10 |
import moviepy.editor as mp
|
| 11 |
import time
|
| 12 |
import langdetect
|
| 13 |
+
import uuid
|
| 14 |
|
| 15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 16 |
print("Starting the program...")
|
|
|
|
| 22 |
model = model.eval()
|
| 23 |
print("Model successfully loaded.")
|
| 24 |
|
| 25 |
+
def generate_unique_filename(extension):
|
| 26 |
+
return f"{uuid.uuid4()}{extension}"
|
| 27 |
+
|
| 28 |
+
def cleanup_file(file_path):
|
| 29 |
+
if os.path.exists(file_path):
|
| 30 |
+
os.remove(file_path)
|
| 31 |
+
print(f"Cleaned up file: {file_path}")
|
| 32 |
+
|
| 33 |
+
def download_youtube_audio(url):
|
| 34 |
print(f"Downloading audio from YouTube: {url}")
|
| 35 |
+
output_path = generate_unique_filename('.wav')
|
| 36 |
ydl_opts = {
|
| 37 |
'format': 'bestaudio/best',
|
| 38 |
'postprocessors': [{
|
|
|
|
| 44 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 45 |
ydl.download([url])
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
if os.path.exists(output_path):
|
| 48 |
print(f"Audio download completed. File saved at: {output_path}")
|
| 49 |
print(f"File size: {os.path.getsize(output_path)} bytes")
|
| 50 |
else:
|
| 51 |
print(f"Error: File {output_path} not found after download.")
|
| 52 |
+
|
| 53 |
+
return output_path
|
| 54 |
|
| 55 |
@spaces.GPU(duration=60)
|
| 56 |
def transcribe_audio(file_path):
|
|
|
|
| 59 |
print("Video file detected. Extracting audio...")
|
| 60 |
try:
|
| 61 |
video = mp.VideoFileClip(file_path)
|
| 62 |
+
audio_path = generate_unique_filename('.wav')
|
| 63 |
video.audio.write_audiofile(audio_path)
|
| 64 |
+
cleanup_file(file_path)
|
| 65 |
file_path = audio_path
|
| 66 |
except Exception as e:
|
| 67 |
print(f"Error extracting audio from video: {e}")
|
| 68 |
raise
|
| 69 |
+
|
| 70 |
+
output_file = generate_unique_filename('.json')
|
|
|
|
| 71 |
command = [
|
| 72 |
"insanely-fast-whisper",
|
| 73 |
"--file-name", file_path,
|
|
|
|
| 80 |
print(f"Executing command: {' '.join(command)}")
|
| 81 |
try:
|
| 82 |
result = subprocess.run(command, check=True, capture_output=True, text=True)
|
|
|
|
|
|
|
| 83 |
except subprocess.CalledProcessError as e:
|
| 84 |
print(f"Error running insanely-fast-whisper: {e}")
|
|
|
|
|
|
|
| 85 |
raise
|
| 86 |
+
|
| 87 |
try:
|
| 88 |
with open(output_file, "r") as f:
|
| 89 |
transcription = json.load(f)
|
| 90 |
except json.JSONDecodeError as e:
|
| 91 |
print(f"Error decoding JSON: {e}")
|
|
|
|
| 92 |
raise
|
| 93 |
+
|
| 94 |
if "text" in transcription:
|
| 95 |
result = transcription["text"]
|
| 96 |
else:
|
| 97 |
result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])
|
| 98 |
+
|
| 99 |
+
cleanup_file(file_path)
|
| 100 |
+
cleanup_file(output_file)
|
| 101 |
+
|
| 102 |
return result
|
| 103 |
|
| 104 |
@spaces.GPU(duration=60)
|
| 105 |
def generate_summary_stream(transcription):
|
| 106 |
print("Starting summary generation...")
|
|
|
|
|
|
|
| 107 |
detected_language = langdetect.detect(transcription)
|
| 108 |
|
| 109 |
prompt = f"""Summarize the following video transcription in 150-300 words.
|
| 110 |
The summary should be in the same language as the transcription, which is detected as {detected_language}.
|
| 111 |
Please ensure that the summary captures the main points and key ideas of the transcription:
|
| 112 |
|
| 113 |
+
{transcription[:300000]}..."""
|
| 114 |
|
| 115 |
response, history = model.chat(tokenizer, prompt, history=[])
|
| 116 |
print(f"Final summary generated: {response[:100]}...")
|
|
|
|
| 117 |
return response
|
| 118 |
|
| 119 |
def process_youtube(url):
|
| 120 |
if not url:
|
|
|
|
| 121 |
return "Please enter a YouTube URL.", None
|
|
|
|
|
|
|
| 122 |
try:
|
| 123 |
+
audio_file = download_youtube_audio(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
transcription = transcribe_audio(audio_file)
|
|
|
|
| 125 |
return transcription, None
|
| 126 |
except Exception as e:
|
|
|
|
| 127 |
return f"Processing error: {str(e)}", None
|
| 128 |
finally:
|
| 129 |
+
cleanup_file(audio_file)
|
|
|
|
|
|
|
| 130 |
|
| 131 |
def process_uploaded_video(video_path):
|
|
|
|
| 132 |
try:
|
|
|
|
| 133 |
transcription = transcribe_audio(video_path)
|
|
|
|
| 134 |
return transcription, None
|
| 135 |
except Exception as e:
|
|
|
|
| 136 |
return f"Processing error: {str(e)}", None
|
| 137 |
+
finally:
|
| 138 |
+
cleanup_file(video_path)
|
| 139 |
|
| 140 |
print("Setting up Gradio interface...")
|
| 141 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
|
| 178 |
def process_video_and_update(video):
|
| 179 |
if video is None:
|
| 180 |
return "No video uploaded.", "Please upload a video."
|
|
|
|
| 181 |
transcription, _ = process_uploaded_video(video)
|
|
|
|
| 182 |
return transcription or "Transcription error", ""
|
| 183 |
|
| 184 |
video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output])
|