asdc's picture
Upload streamlit_app.py
2f2c452 verified
raw
history blame
3.06 kB
import streamlit as st
from typing import List, Tuple
import re
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification
# Mapping of label to color
LABEL_COLORS = {
'LABEL-0': '#cccccc', # NONE
'LABEL-1': '#ffadad', # B-DATE
'LABEL-2': '#ffd6a5', # I-DATE
'LABEL-3': '#fdffb6', # B-TIME
'LABEL-4': '#caffbf', # I-TIME
'LABEL-5': '#9bf6ff', # B-DURATION
'LABEL-6': '#a0c4ff', # I-DURATION
'LABEL-7': '#bdb2ff', # B-SET
'LABEL-8': '#ffc6ff', # I-SET
}
@st.cache_resource(show_spinner=True)
def load_model():
tokenizer = AutoTokenizer.from_pretrained('asdc/Bio-RoBERTime')
model = AutoModelForTokenClassification.from_pretrained('asdc/Bio-RoBERTime')
return tokenizer, model
def ner_with_robertime(text: str) -> List[Tuple[str, str]]:
tokenizer, model = load_model()
# Tokenize and get input tensors
tokens = tokenizer(text, return_tensors="pt", truncation=True, is_split_into_words=False)
with torch.no_grad():
outputs = model(**tokens)
predictions = torch.argmax(outputs.logits, dim=2)[0].tolist()
# Map ids to labels
labels = [model.config.id2label[pred] for pred in predictions]
# Get tokens (handling subwords)
word_ids = tokens.word_ids(batch_index=0)
token_list = tokenizer.convert_ids_to_tokens(tokens["input_ids"][0])
# Merge subwords and assign entity labels
entities = []
current_word = ''
current_label = None
last_word_id = None
for idx, word_id in enumerate(word_ids):
if word_id is None:
continue
token = token_list[idx]
label = labels[idx]
if token.startswith('▁') or token.startswith('##') or token.startswith('Ġ'):
token = token.lstrip('▁#Ġ')
if word_id != last_word_id and current_word:
entities.append((current_word, current_label))
current_word = token
current_label = label
else:
if current_word:
current_word += token if token.startswith("'") else f' {token}'
else:
current_word = token
current_label = label
last_word_id = word_id
if current_word:
entities.append((current_word, current_label))
return entities
def colorize_entities(ner_result: List[Tuple[str, str]]) -> str:
html = ''
for token, label in ner_result:
color = LABEL_COLORS.get(label, '#eeeeee')
if label != 'LABEL-0':
html += f'<span style="background-color:{color};padding:2px 4px;border-radius:4px;margin:1px;">{token}</span> '
else:
html += f'{token} '
return html
st.title('LLM-powered Named Entity Recognition (NER)')
user_text = st.text_area('Enter text for NER:', height=150)
if user_text:
ner_result = ner_with_robertime(user_text)
st.markdown('#### Entities:')
st.markdown(colorize_entities(ner_result), unsafe_allow_html=True)
st.caption('Model: [asdc/Bio-RoBERTime](https://huggingface.co/asdc/Bio-RoBERTime)')