Spaces:
Runtime error
Runtime error
# π¦ Installations needed locally before deploying: | |
# Linux: sudo apt install tesseract-ocr poppler-utils | |
# Windows: Install Tesseract from https://github.com/tesseract-ocr/tesseract | |
import gradio as gr | |
from pdf2image import convert_from_path | |
from PIL import Image | |
import pytesseract | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load MedAlpaca Model from Hugging Face | |
model_name = "medalpaca/medalpaca-7b" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# ========== OCR FUNCTIONS ========== | |
def extract_text_from_image(image): | |
return pytesseract.image_to_string(image) | |
def extract_text_from_pdf(pdf_file): | |
try: | |
images = convert_from_path(pdf_file.name) | |
text = "" | |
for page in images: | |
text += pytesseract.image_to_string(page) + "\n" | |
return text | |
except Exception as e: | |
return f"Error reading PDF: {e}" | |
# ========== MEDALPACA RESPONSE ========== | |
def generate_medical_explanation(text): | |
prompt = ( | |
"You are a helpful medical assistant. Analyze the following patient's lab report text " | |
"and explain the abnormalities in plain, non-technical language:\n\n" + text + | |
"\n\nAlso, highlight abnormal values with flags." | |
) | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7) | |
result = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return result.split(prompt)[-1].strip() | |
# ========== MAIN APP FUNCTION ========== | |
def analyze_file(file): | |
if not file: | |
return "β οΈ No file uploaded.", "" | |
filename = file.name.lower() | |
if filename.endswith(".pdf"): | |
extracted_text = extract_text_from_pdf(file) | |
else: | |
try: | |
img = Image.open(file.name) | |
extracted_text = extract_text_from_image(img) | |
except Exception as e: | |
return f"β Error loading image: {e}", "" | |
if not extracted_text.strip(): | |
return "β No text found. Try uploading a clearer image or PDF.", "" | |
ai_response = generate_medical_explanation(extracted_text) | |
return extracted_text, ai_response | |
# ========== GRADIO INTERFACE ========== | |
gr.Interface( | |
fn=analyze_file, | |
inputs=gr.File(label="π Upload Lab Report (Image or PDF)"), | |
outputs=[ | |
gr.Textbox(label="π Extracted Text", lines=20), | |
gr.Textbox(label="π§ MedAlpaca Interpretation", lines=20) | |
], | |
title="π¬ AI Lab Report Analyzer with MedAlpaca", | |
description="Upload your medical report (image or PDF). This app extracts text using OCR and explains lab values using the MedAlpaca model." | |
).launch() | |