Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
# import pickle
|
3 |
# import numpy as np
|
4 |
# from fastapi import FastAPI,Response
|
@@ -38,52 +40,61 @@ import torch
|
|
38 |
|
39 |
# f1_metric.set(f1)
|
40 |
|
41 |
-
feature_extractor = ViTImageProcessor.from_pretrained("model")
|
42 |
|
43 |
-
cap_model = VisionEncoderDecoderModel.from_pretrained("model")
|
44 |
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained("model")
|
46 |
-
print("tokenizer --",tokenizer)
|
47 |
|
48 |
-
|
49 |
|
50 |
-
cap_model.to(device)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
# num_beams = 4
|
55 |
-
# gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
56 |
|
57 |
-
# pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
58 |
-
# pixel_values = pixel_values.to(device)
|
59 |
|
60 |
-
# output_ids = model.generate(pixel_values, **gen_kwargs)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
|
80 |
def predict_event(image):
|
81 |
|
82 |
|
|
|
|
|
|
|
83 |
|
84 |
-
caption_vitgpt = generate_caption(
|
|
|
85 |
|
86 |
-
return
|
87 |
|
88 |
|
89 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from model.config import *
|
3 |
+
from PIL import Image
|
4 |
# import pickle
|
5 |
# import numpy as np
|
6 |
# from fastapi import FastAPI,Response
|
|
|
40 |
|
41 |
# f1_metric.set(f1)
|
42 |
|
|
|
43 |
|
|
|
44 |
|
|
|
|
|
45 |
|
46 |
+
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(encoder._name_or_path, decoder._name_or_path)
|
47 |
|
|
|
48 |
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(decoder._name_or_path)
|
50 |
+
tokenizer.pad_token = tokenizer.unk_token
|
|
|
|
|
51 |
|
|
|
|
|
52 |
|
|
|
53 |
|
54 |
+
# feature_extractor = ViTImageProcessor.from_pretrained("model")
|
55 |
+
|
56 |
+
# cap_model = VisionEncoderDecoderModel.from_pretrained("model")
|
57 |
+
|
58 |
+
# tokenizer = AutoTokenizer.from_pretrained("model")
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
69 |
+
|
70 |
+
# cap_model.to(device)
|
71 |
+
|
72 |
+
# def generate_caption(model, image, tokenizer=None):
|
73 |
+
|
74 |
|
75 |
+
# generated_ids = model.generate(pixel_values=inputs.pixel_values)
|
76 |
+
# print("generated_ids",generated_ids)
|
77 |
+
|
78 |
+
# if tokenizer is not None:
|
79 |
+
# print("tokenizer not null--",tokenizer)
|
80 |
+
# generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
81 |
+
# else:
|
82 |
+
# print("tokenizer null--",tokenizer)
|
83 |
+
# generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
84 |
|
85 |
+
# return generated_caption
|
86 |
|
87 |
def predict_event(image):
|
88 |
|
89 |
|
90 |
+
img = Image.open(image).convert("RGB")
|
91 |
+
|
92 |
+
generated_caption = tokenizer.decode(model.generate(feature_extractor(img, return_tensors="pt").pixel_values.to("cuda"))[0])
|
93 |
|
94 |
+
# caption_vitgpt = generate_caption(model, image)
|
95 |
+
#caption_vitgpt = generate_caption(feature_extractor, cap_model, image, tokenizer)
|
96 |
|
97 |
+
return '\033[96m' +generated_caption[:85]+ '\033[0m'
|
98 |
|
99 |
|
100 |
|