Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pickle | |
import numpy as np | |
from fastapi import FastAPI,Response | |
from sklearn.metrics import accuracy_score, f1_score | |
import prometheus_client as prom | |
import pandas as pd | |
# from transformers import pipeline | |
#model | |
save_file_name="xgboost-model.pkl" | |
loaded_model = pickle.load(open(save_file_name, 'rb')) | |
app=FastAPI() | |
# username="ashwml" | |
# repo_name="prometheus_model" | |
# model=username+'/'+repo_name | |
test_data=pd.read_csv("test.csv") | |
f1_metric = prom.Gauge('death_f1_score', 'F1 score for test samples') | |
# Function for updating metrics | |
def update_metrics(): | |
test = test_data.sample(20) | |
X = test.iloc[:, :-1].values | |
y = test['DEATH_EVENT'].values | |
# test_text = test['Text'].values | |
test_pred = loaded_model.predict(X) | |
#pred_labels = [int(pred['label'].split("_")[1]) for pred in test_pred] | |
f1 = f1_score( y , test_pred).round(3) | |
#f1 = f1_score(test['labels'], pred_labels).round(3) | |
f1_metric.set(f1) | |
def predict_death_event(age, anaemia, creatinine_phosphokinase ,diabetes ,ejection_fraction, high_blood_pressure ,platelets ,serum_creatinine, serum_sodium, sex ,smoking ,time): | |
input=[[age, anaemia, creatinine_phosphokinase ,diabetes ,ejection_fraction, high_blood_pressure ,platelets ,serum_creatinine, serum_sodium, sex ,smoking ,time]] | |
result=loaded_model.predict(input) | |
if result[0]==1: | |
return 'Positive' | |
else: | |
return 'Negative' | |
return result | |
async def get_metrics(): | |
update_metrics() | |
return Response(media_type="text/plain", content= prom.generate_latest()) | |
title = "Patient Survival Prediction" | |
description = "Predict survival of patient with heart failure, given their clinical record" | |
out_response = gr.components.Textbox(type="text", label='Death_event') | |
iface = gr.Interface(fn=predict_death_event, | |
inputs=[ | |
gr.Slider(18, 100, value=20, label="Age"), | |
gr.Slider(0, 1, value=1, label="anaemia"), | |
gr.Slider(100, 2000, value=20, label="creatinine_phosphokinase"), | |
gr.Slider(0, 1, value=1, label="diabetes"), | |
gr.Slider(18, 100, value=20, label="ejection_fraction"), | |
gr.Slider(0, 1, value=1, label="high_blood_pressure"), | |
gr.Slider(18, 400000, value=20, label="platelets"), | |
gr.Slider(1, 10, value=20, label="serum_creatinine"), | |
gr.Slider(100, 200, value=20, label="serum_sodium"), | |
gr.Slider(0, 1, value=1, label="sex"), | |
gr.Slider(0, 1, value=1, label="smoking"), | |
gr.Slider(1, 10, value=20, label="time"), | |
], | |
outputs = [out_response]) | |
app = gr.mount_gradio_app(app, iface, path="/") | |
# iface.launch(server_name = "0.0.0.0", server_port = 8001) | |
if __name__ == "__main__": | |
# Use this for debugging purposes only | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8001) |