streamlitweb1 / app.py
asmaa105's picture
Upload app.py
2d073e8 verified
import os
import re
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, Literal
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
import gradio as gr
import uvicorn
from pydantic import BaseModel
from dotenv import load_dotenv
load_dotenv()
# Configuration
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "716f77a91d0415cd0e3ed9dc8d188fc9ee53b11a8661e161a86f669f598a8016")
HF_TOKEN = os.getenv("HF_TOKEN")
# Simple storage for processed tag operations
tag_operations_store: List[Dict[str, Any]] = []
# Common ML tags that we recognize for auto-tagging
RECOGNIZED_TAGS = {
"pytorch",
"tensorflow",
"jax",
"transformers",
"diffusers",
"text-generation",
"text-classification",
"question-answering",
"text-to-image",
"image-classification",
"object-detection",
"fill-mask",
"token-classification",
"translation",
"summarization",
"feature-extraction",
"sentence-similarity",
"zero-shot-classification",
"image-to-text",
"automatic-speech-recognition",
"audio-classification",
"voice-activity-detection",
"depth-estimation",
"image-segmentation",
"video-classification",
"reinforcement-learning",
"tabular-classification",
"tabular-regression",
"time-series-forecasting",
"graph-ml",
"robotics",
"computer-vision",
"nlp",
"cv",
"multimodal",
}
class WebhookEvent(BaseModel):
event: Dict[str, str]
comment: Dict[str, Any]
discussion: Dict[str, Any]
repo: Dict[str, str]
app = FastAPI(title="HF Tagging Bot")
app.add_middleware(CORSMiddleware, allow_origins=["*"])
def extract_tags_from_text(text: str) -> List[str]:
"""Extract potential tags from discussion text"""
text_lower = text.lower()
# Look for explicit tag mentions like "tag: pytorch" or "#pytorch"
explicit_tags = []
# Pattern 1: "tag: something" or "tags: something"
tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
matches = re.findall(tag_pattern, text_lower)
for match in matches:
# Split by comma and clean up
tags = [tag.strip() for tag in match.split(",")]
explicit_tags.extend(tags)
# Pattern 2: "#hashtag" style
hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
hashtag_matches = re.findall(hashtag_pattern, text_lower)
explicit_tags.extend(hashtag_matches)
# Pattern 3: Look for recognized tags mentioned in natural text
mentioned_tags = []
for tag in RECOGNIZED_TAGS:
if tag in text_lower:
mentioned_tags.append(tag)
# Combine and deduplicate
all_tags = list(set(explicit_tags + mentioned_tags))
# Filter to only include recognized tags or explicitly mentioned ones
valid_tags = []
for tag in all_tags:
if tag in RECOGNIZED_TAGS or tag in explicit_tags:
valid_tags.append(tag)
return valid_tags
async def process_tags_directly(all_tags: List[str], repo_name: str) -> List[str]:
"""Process tags using direct HuggingFace Hub API calls"""
print("πŸ”§ Using direct HuggingFace Hub API approach...")
result_messages = []
if not HF_TOKEN:
error_msg = "No HF_TOKEN configured"
print(f"❌ {error_msg}")
return [error_msg]
try:
from huggingface_hub import HfApi, model_info, dataset_info, space_info, ModelCard, ModelCardData
from huggingface_hub.utils import HfHubHTTPError
from huggingface_hub import CommitOperationAdd
hf_api = HfApi(token=HF_TOKEN)
# First, let's determine what type of repository this is
repo_type = None
repo_info = None
# Try different repository types
for repo_type_to_try in ["model", "dataset", "space"]:
try:
print(f"πŸ” Trying to access {repo_name} as {repo_type_to_try}...")
if repo_type_to_try == "model":
repo_info = model_info(repo_id=repo_name, token=HF_TOKEN)
elif repo_type_to_try == "dataset":
repo_info = dataset_info(repo_id=repo_name, token=HF_TOKEN)
elif repo_type_to_try == "space":
repo_info = space_info(repo_id=repo_name, token=HF_TOKEN)
repo_type = repo_type_to_try
print(f"βœ… Found repository as {repo_type}")
break
except HfHubHTTPError as e:
if "404" in str(e):
print(f"⚠️ Repository not found as {repo_type_to_try}")
continue
else:
print(f"❌ Error accessing as {repo_type_to_try}: {e}")
continue
except Exception as e:
print(f"❌ Unexpected error for {repo_type_to_try}: {e}")
continue
if not repo_type or not repo_info:
error_msg = f"Repository '{repo_name}' not found as model, dataset, or space"
print(f"❌ {error_msg}")
return [f"Error: {error_msg}"]
print(f"πŸ“‹ Repository type: {repo_type}")
current_tags = repo_info.tags if repo_info.tags else []
print(f"🏷️ Current tags: {current_tags}")
# Process each tag
for tag in all_tags:
try:
# Check if tag already exists
if tag in current_tags:
msg = f"Tag '{tag}': Already exists"
print(f"βœ… {msg}")
result_messages.append(msg)
continue
# Add the new tag
print(f"πŸ”§ Adding tag '{tag}' to {repo_type} '{repo_name}'")
updated_tags = current_tags + [tag]
# Create model card content with updated tags
try:
# Load existing model card
print(f"πŸ“„ Loading existing model card...")
card = ModelCard.load(repo_name, token=HF_TOKEN, repo_type=repo_type)
if not hasattr(card, "data") or card.data is None:
card.data = ModelCardData()
except HfHubHTTPError:
# Create new model card if none exists
print(f"πŸ“„ Creating new model card (none exists)")
card = ModelCard("")
card.data = ModelCardData()
# Update tags
card_dict = card.data.to_dict()
card_dict["tags"] = updated_tags
card.data = ModelCardData(**card_dict)
# Create a pull request with the updated model card
pr_title = f"Add '{tag}' tag"
pr_description = f"""
## Add tag: {tag}
This PR adds the `{tag}` tag to the {repo_type} repository.
**Changes:**
- Added `{tag}` to {repo_type} tags
- Updated from {len(current_tags)} to {len(updated_tags)} tags
**Current tags:** {", ".join(current_tags) if current_tags else "None"}
**New tags:** {", ".join(updated_tags)}
"""
print(f"πŸš€ Creating PR with title: {pr_title}")
# Create commit with updated model card
commit_info = hf_api.create_commit(
repo_id=repo_name,
repo_type=repo_type,
operations=[
CommitOperationAdd(
path_in_repo="README.md",
path_or_fileobj=str(card).encode("utf-8")
)
],
commit_message=pr_title,
commit_description=pr_description,
token=HF_TOKEN,
create_pr=True,
)
# Extract PR URL from commit info
pr_url = getattr(commit_info, 'pr_url', str(commit_info))
print(f"βœ… PR created successfully! URL: {pr_url}")
msg = f"Tag '{tag}': PR created - {pr_url}"
result_messages.append(msg)
except Exception as tag_error:
error_msg = f"Tag '{tag}': Error - {str(tag_error)}"
print(f"❌ {error_msg}")
result_messages.append(error_msg)
return result_messages
except Exception as e:
error_msg = f"Direct API processing failed: {str(e)}"
print(f"❌ {error_msg}")
return [error_msg]
async def process_webhook_comment(webhook_data: Dict[str, Any]):
"""Process webhook to detect and add tags"""
print("🏷️ Starting process_webhook_comment...")
try:
comment_content = webhook_data["comment"]["content"]
discussion_title = webhook_data["discussion"]["title"]
repo_name = webhook_data["repo"]["name"]
discussion_num = webhook_data["discussion"]["num"]
comment_author = webhook_data["comment"]["author"].get("id", "unknown")
print(f"πŸ“ Comment content: {comment_content}")
print(f"πŸ“° Discussion title: {discussion_title}")
print(f"πŸ“¦ Repository: {repo_name}")
# Extract potential tags from the comment and discussion title
comment_tags = extract_tags_from_text(comment_content)
title_tags = extract_tags_from_text(discussion_title)
all_tags = list(set(comment_tags + title_tags))
print(f"πŸ” Comment tags found: {comment_tags}")
print(f"πŸ” Title tags found: {title_tags}")
print(f"🏷️ All unique tags: {all_tags}")
result_messages = []
if not all_tags:
msg = "No recognizable tags found in the discussion."
print(f"❌ {msg}")
result_messages.append(msg)
else:
# Skip agent entirely and use direct API approach
print("πŸ”§ Using direct HuggingFace Hub API processing...")
result_messages = await process_tags_directly(all_tags, repo_name)
# Store the interaction
base_url = "https://huggingface.co"
discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}"
interaction = {
"timestamp": datetime.now().isoformat(),
"repo": repo_name,
"discussion_title": discussion_title,
"discussion_num": discussion_num,
"discussion_url": discussion_url,
"original_comment": comment_content,
"comment_author": comment_author,
"detected_tags": all_tags,
"results": result_messages,
}
tag_operations_store.append(interaction)
final_result = " | ".join(result_messages)
print(f"πŸ’Ύ Stored interaction and returning result: {final_result}")
return final_result
except Exception as e:
error_msg = f"❌ Fatal error in process_webhook_comment: {str(e)}"
print(error_msg)
import traceback
print(f"❌ Traceback: {traceback.format_exc()}")
return error_msg
@app.post("/webhook")
async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
"""Handle HF Hub webhooks"""
webhook_secret = request.headers.get("X-Webhook-Secret")
if webhook_secret != WEBHOOK_SECRET:
print("❌ Invalid webhook secret")
return {"error": "Invalid webhook secret"}
payload = await request.json()
print(f"πŸ“₯ Received webhook payload: {json.dumps(payload, indent=2)}")
event = payload.get("event", {})
scope = event.get("scope")
action = event.get("action")
print(f"πŸ” Event details - scope: {scope}, action: {action}")
# Check if this is a discussion comment creation
scope_check = scope == "discussion"
action_check = action == "create"
not_pr = not payload["discussion"]["isPullRequest"]
scope_check = scope_check and not_pr
print(f"βœ… not_pr: {not_pr}")
print(f"βœ… scope_check: {scope_check}")
print(f"βœ… action_check: {action_check}")
if scope_check and action_check:
# Verify we have the required fields
required_fields = ["comment", "discussion", "repo"]
missing_fields = [field for field in required_fields if field not in payload]
if missing_fields:
error_msg = f"Missing required fields: {missing_fields}"
print(f"❌ {error_msg}")
return {"error": error_msg}
print(f"πŸš€ Processing webhook for repo: {payload['repo']['name']}")
background_tasks.add_task(process_webhook_comment, payload)
return {"status": "processing"}
print(f"⏭️ Ignoring webhook - scope: {scope}, action: {action}")
return {"status": "ignored"}
async def simulate_webhook(
repo_name: str, discussion_title: str, comment_content: str
) -> str:
"""Simulate webhook for testing"""
if not all([repo_name, discussion_title, comment_content]):
return "Please fill in all fields."
mock_payload = {
"event": {"action": "create", "scope": "discussion"},
"comment": {
"content": comment_content,
"author": {"id": "test-user-id"},
"id": "mock-comment-id",
"hidden": False,
},
"discussion": {
"title": discussion_title,
"num": len(tag_operations_store) + 1,
"id": "mock-discussion-id",
"status": "open",
"isPullRequest": False,
},
"repo": {
"name": repo_name,
"type": "model",
"private": False,
},
}
response = await process_webhook_comment(mock_payload)
return f"βœ… Processed! Results: {response}"
def create_gradio_app():
"""Create Gradio interface"""
with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🏷️ HF Tagging Bot Dashboard")
gr.Markdown("*Automatically adds tags to models, datasets, and spaces when mentioned in discussions*")
gr.Markdown("""
## How it works:
- Monitors HuggingFace Hub discussions
- Detects tag mentions in comments (e.g., "tag: pytorch", "#transformers")
- Automatically detects repository type (model/dataset/space)
- Creates pull requests to add recognized tags to the repository
- Supports common ML tags like: pytorch, tensorflow, text-generation, etc.
""")
with gr.Column():
sim_repo = gr.Textbox(
label="Repository",
value="burtenshaw/play-mcp-repo-bot",
placeholder="username/repo-name (can be model, dataset, or space)",
)
sim_title = gr.Textbox(
label="Discussion Title",
value="Add pytorch tag",
placeholder="Discussion title",
)
sim_comment = gr.Textbox(
label="Comment",
lines=3,
value="This repository should have tags: pytorch, text-generation",
placeholder="Comment mentioning tags...",
)
sim_btn = gr.Button("🏷️ Test Tag Detection")
with gr.Column():
sim_result = gr.Textbox(label="Result", lines=8)
sim_btn.click(
fn=simulate_webhook,
inputs=[sim_repo, sim_title, sim_comment],
outputs=sim_result,
)
gr.Markdown(f"""
## Recognized Tags:
{", ".join(sorted(RECOGNIZED_TAGS))}
""")
# Add recent operations section
if tag_operations_store:
gr.Markdown("## Recent Operations")
for op in tag_operations_store[-5:]: # Show last 5 operations
gr.Markdown(f"""
**{op['repo']}** - {op['timestamp'][:19]}
- Tags: {', '.join(op['detected_tags'])}
- Results: {' | '.join(op['results'][:2])}...
""")
return demo
# Mount Gradio app
gradio_app = create_gradio_app()
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
if __name__ == "__main__":
print("πŸš€ Starting HF Tagging Bot...")
print(f"πŸ“Š Dashboard: http://localhost:7860/gradio")
print(f"πŸ”— Webhook: http://localhost:7860/webhook")
print(f"πŸ”‘ HF_TOKEN configured: {bool(HF_TOKEN)}")
print("πŸ”§ Using direct HuggingFace Hub API (Windows compatible)")
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)