Spaces:
Sleeping
Sleeping
File size: 2,664 Bytes
a355d31 f58319d b89d1a0 a355d31 86031f7 a7fc99e 86031f7 660e348 86031f7 a7fc99e 86031f7 f58319d a355d31 780f607 a355d31 a7fc99e 86031f7 a355d31 b89d1a0 2ab57bd a355d31 86031f7 a355d31 2ab57bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import gradio as gr
from transformers import pipeline
import os
def transcribe(audio, language):
model_map = {
"hausa": "asr-africa/wav2vec2-xls-r-1b-naijavoices-hausa-500hr-v0",
"igbo": "asr-africa/wav2vec2-xls-r-1b-naijavoices-igbo-500hr-v0",
"yoruba": "asr-africa/wav2vec2-xls-r-1b-naijavoices-yoruba-500hr-v0",
"zulu": "asr-africa/W2V2-Bert_nchlt_speech_corpus_Fleurs_ZULU_63hr_v1",
"xhosa": "asr-africa/wav2vec2_xls_r_300m_nchlt_speech_corpus_Fleurs_XHOSA_63hr_v1",
"afrikaans": "asr-africa/mms-1B_all_nchlt_speech_corpus_Fleurs_CV_AFRIKAANS_57hr_v1",
"bemba": "asr-africa/w2v-bert-2.0-BIG_C-AMMI-BEMBA_SPEECH_CORPUS-BEMBA-189hrs-V1",
"shona": "asr-africa/W2V2_Bert_Afrivoice_FLEURS_Shona_100hr_v1",
"luganda": "asr-africa/whisper-small-CV-Fleurs-lg-313hrs-v1",
"swahili": "asr-africa/wav2vec2-xls-r-300m-CV_Fleurs_AMMI_ALFFA-sw-400hrs-v1",
"lingala": "asr-africa/wav2vec2-xls-r-300m-Fleurs_AMMI_AFRIVOICE_LRSC-ln-109hrs-v2",
"amharic": "asr-africa/facebook-mms-1b-all-common_voice_fleurs-amh-200hrs-v1",
"kinyarwanda": "asr-africa/facebook-mms-1b-all-common_voice_fleurs-rw-100hrs-v1",
"oromo": "asr-africa/mms-1b-all-Sagalee-orm-85hrs-4",
"akan": "asr-africa/wav2vec2-xls-r-ewe-100-hours",
"ewe": "asr-africa/wav2vec2-xls-r-akan-100-hours",
"wolof": "asr-africa/w2v2-bert-Wolof-20-hours-Google-Fleurs-ALF-dataset",
"bambara": "asr-africa/mms-bambara-50-hours-mixed-bambara-dataset",
}
# load eval pipeline
asr = pipeline("automatic-speech-recognition", model=model_map[language], device=0, token=os.getenv('HF_TOKEN'))
text = asr(audio)["text"]
return text
asr_app = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources=["upload", "microphone"], type="filepath"),
gr.Dropdown(
[
"hausa",
"igbo",
"yoruba",
"zulu",
"xhosa",
"afrikaans",
"bemba",
"shona",
"luganda",
"swahili",
"lingala",
"amharic",
"kinyarwanda",
"oromo",
"akan",
"ewe",
"wolof",
"bambara",
]
),
],
outputs="text",
title="ASR Africa",
description="This space serves as a realtime demo for automatic speech recognition models developed by Mak-CAD under the auspicies of Gates Foundation for 19 African languages using open source data.",
)
asr_app.launch()
|