File size: 12,517 Bytes
f3b123c
1c7efef
f3b123c
15fed3e
f3b123c
15fed3e
 
 
 
 
ce26954
1c7efef
 
f3b123c
7defefc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15fed3e
a9db5e7
 
 
f3b123c
 
 
 
 
 
 
a9db5e7
 
 
 
 
f3b123c
a9db5e7
f3b123c
a9db5e7
f1e501d
 
7defefc
a9db5e7
 
c46df75
f3b123c
 
15fed3e
f3b123c
15fed3e
 
 
 
 
 
 
 
 
 
 
 
f3b123c
2d17b60
7defefc
2d17b60
f3b123c
 
2d17b60
 
f3b123c
2d17b60
 
a9db5e7
f3b123c
a9db5e7
2d17b60
 
 
f3b123c
2d17b60
 
 
f3b123c
2d17b60
 
f3b123c
2d17b60
 
a9db5e7
7defefc
a9db5e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7defefc
 
 
 
 
 
 
 
 
a9db5e7
7defefc
 
 
 
 
a9db5e7
 
 
 
7defefc
a9db5e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7defefc
a9db5e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7defefc
a9db5e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7defefc
a9db5e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d17b60
6518544
7defefc
2d17b60
f3b123c
 
 
 
 
 
 
 
 
2d17b60
a9db5e7
 
 
 
 
 
 
 
f3b123c
 
 
 
 
 
 
 
 
 
 
 
2d17b60
f3b123c
 
2d17b60
f3b123c
 
 
2d17b60
 
 
f3b123c
 
 
 
 
 
2d17b60
f3b123c
2d17b60
 
f3b123c
 
 
 
 
2d17b60
 
f3b123c
6518544
 
 
 
 
 
 
 
 
 
2d17b60
 
 
f3b123c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import spaces
import torch
from datetime import datetime
from transformers import AutoModel, AutoTokenizer
import gradio as gr
from PIL import Image
from decord import VideoReader, cpu
import os
import gc
import tempfile
from ultralytics import YOLO
import numpy as np
import cv2
from modelscope.hub.snapshot_download import snapshot_download
from ultralytics.nn.modules import Conv, C2f
from torch import nn
import ultralytics.nn.modules as modules

# Add custom C3k2 module definition
class C3k2(nn.Module):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__()
        c_ = int(c2 * e)
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)
        self.m = nn.Sequential(*(C2f(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

# Patch the Ultralytics module
modules.C3k2 = C3k2

# Fix GLIBCXX dependency
os.environ['LD_LIBRARY_PATH'] = '/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH'

# Initialize GPU
@spaces.GPU
def initialize_gpu():
    if torch.cuda.is_available():
        torch.randn(10).cuda()
initialize_gpu()

# Load YOLO model with error handling
try:
    YOLO_MODEL = YOLO('best_yolov11.pt')
except Exception as e:
    raise RuntimeError(f"YOLO model loading failed: {str(e)}")

# Model configuration
MODEL_NAME = 'iic/mPLUG-Owl3-7B-240728'
try:
    model_dir = snapshot_download(MODEL_NAME, 
                                 cache_dir='./models',
                                 revision='main')
except Exception as e:
    raise RuntimeError(f"Model download failed: {str(e)}")

# Device setup
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# File validation
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}

def get_file_extension(filename):
    return os.path.splitext(filename)[1].lower()

def is_image(filename):
    return get_file_extension(filename) in IMAGE_EXTENSIONS

def is_video(filename):
    return get_file_extension(filename) in VIDEO_EXTENSIONS

@spaces.GPU
def load_model_and_tokenizer():
    """Load 8-bit quantized model"""
    try:
        torch.cuda.empty_cache()
        gc.collect()
        
        model = AutoModel.from_pretrained(
            model_dir,
            attn_implementation='sdpa',
            trust_remote_code=True,
            load_in_8bit=True,
            device_map="auto",
            torch_dtype=torch.float16
        )

        tokenizer = AutoTokenizer.from_pretrained(
            model_dir,
            trust_remote_code=True
        )
        processor = model.init_processor(tokenizer)
        model.eval()
        return model, tokenizer, processor
    except Exception as e:
        print(f"Model loading error: {str(e)}")
        raise

def process_yolo_results(results):
    """Process YOLO detection results"""
    machinery_mapping = {
        'tower_crane': "Tower Crane",
        'mobile_crane': "Mobile Crane",
        'compactor': "Compactor/Roller",
        'roller': "Compactor/Roller",
        'bulldozer': "Bulldozer",
        'dozer': "Bulldozer",
        'excavator': "Excavator",
        'dump_truck': "Dump Truck",
        'truck': "Dump Truck",
        'concrete_mixer_truck': "Concrete Mixer",
        'loader': "Loader",
        'pump_truck': "Pump Truck",
        'pile_driver': "Pile Driver",
        'grader': "Grader",
        'other_vehicle': "Other Vehicle"
    }

    counts = {"Worker": 0, **{v: 0 for v in machinery_mapping.values()}}
    
    for r in results:
        for box in r.boxes:
            if box.conf.item() < 0.5:
                continue
            
            cls_name = YOLO_MODEL.names[int(box.cls.item())].lower()
            if cls_name == 'worker':
                counts["Worker"] += 1
                continue
                
            for key, value in machinery_mapping.items():
                if key in cls_name:
                    counts[value] += 1
                    break

    return counts["Worker"], sum(counts.values()) - counts["Worker"], counts

@spaces.GPU
def detect_people_and_machinery(media_path):
    """GPU-accelerated detection"""
    try:
        max_people = 0
        max_machines = {k: 0 for k in [
            "Tower Crane", "Mobile Crane", "Compactor/Roller", "Bulldozer",
            "Excavator", "Dump Truck", "Concrete Mixer", "Loader",
            "Pump Truck", "Pile Driver", "Grader", "Other Vehicle"
        ]}

        if isinstance(media_path, str) and is_video(media_path):
            cap = cv2.VideoCapture(media_path)
            fps = cap.get(cv2.CAP_PROP_FPS)
            sample_rate = max(1, int(fps))
            
            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break
                
                if cap.get(cv2.CAP_PROP_POS_FRAMES) % sample_rate == 0:
                    results = YOLO_MODEL(frame)
                    people, machines, types = process_yolo_results(results)
                    
                    max_people = max(max_people, people)
                    for k in max_machines:
                        max_machines[k] = max(max_machines[k], types.get(k, 0))
            
            cap.release()
        else:
            img = cv2.imread(media_path) if isinstance(media_path, str) else cv2.cvtColor(np.array(media_path), cv2.COLOR_RGB2BGR)
            results = YOLO_MODEL(img)
            max_people, _, types = process_yolo_results(results)
            for k in max_machines:
                max_machines[k] = types.get(k, 0)

        filtered = {k: v for k, v in max_machines.items() if v > 0}
        return max_people, sum(filtered.values()), filtered
    
    except Exception as e:
        print(f"Detection error: {str(e)}")
        return 0, 0, {}

@spaces.GPU
def analyze_video_activities(video_path):
    """Video analysis with chunk processing"""
    try:
        model, tokenizer, processor = load_model_and_tokenizer()
        responses = []
        
        vr = VideoReader(video_path, ctx=cpu(0))
        frame_step = max(1, int(vr.get_avg_fps()))
        total_frames = len(vr)
        
        for i in range(0, total_frames, 16):
            end_idx = min(i+16, total_frames)
            frames = [Image.fromarray(vr[j].asnumpy()) for j in range(i, end_idx)]
            
            inputs = processor(
                [{"role": "user", "content": "Analyze construction activities", "video_frames": frames}],
                videos=[frames]
            ).to(DEVICE)
            
            response = model.generate(**inputs, max_new_tokens=200)
            responses.append(response[0])
            
            del frames, inputs
            torch.cuda.empty_cache()
        
        del model, tokenizer, processor
        return "\n".join(responses)
    
    except Exception as e:
        print(f"Video analysis error: {str(e)}")
        return "Activity analysis unavailable"

@spaces.GPU
def analyze_image_activities(image_path):
    """Image analysis pipeline"""
    try:
        model, tokenizer, processor = load_model_and_tokenizer()
        image = Image.open(image_path).convert("RGB")
        
        inputs = processor(
            [{"role": "user", "content": "Analyze construction site", "images": [image]}],
            images=[image]
        ).to(DEVICE)
        
        response = model.generate(**inputs, max_new_tokens=200)
        
        del model, tokenizer, processor, image, inputs
        torch.cuda.empty_cache()
        return response[0]
    
    except Exception as e:
        print(f"Image analysis error: {str(e)}")
        return "Activity analysis unavailable"

@spaces.GPU
def annotate_video_with_bboxes(video_path):
    """Video annotation with detection overlay"""
    try:
        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
        writer = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))

        frame_count = 0
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            
            if frame_count % 5 == 0:
                results = YOLO_MODEL(frame)
                counts = {}
                
                for r in results:
                    for box in r.boxes:
                        if box.conf.item() < 0.5:
                            continue
                        
                        cls_id = int(box.cls.item())
                        class_name = YOLO_MODEL.names[cls_id]
                        counts[class_name] = counts.get(class_name, 0) + 1
                        
                        x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
                        cv2.rectangle(frame, (x1, y1), (x2, y2), (0,255,0), 2)
                        cv2.putText(frame, f"{class_name} {box.conf.item():.2f}", 
                                   (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1)
                
                summary = ", ".join([f"{k}:{v}" for k,v in counts.items()])
                cv2.putText(frame, summary, (10,30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 2)
            
            writer.write(frame)
            frame_count += 1
        
        cap.release()
        writer.release()
        return temp_file.name
    
    except Exception as e:
        print(f"Video annotation error: {str(e)}")
        return None

def process_diary(day, date, media):
    """Main processing pipeline"""
    try:
        if not media:
            return [day, date, "No data", "No data", "No data", "No data", None]
        
        with tempfile.NamedTemporaryFile(delete=False) as tmp:
            tmp.write(media.read())
            media_path = tmp.name
        
        detected_people, detected_machinery, machine_types = detect_people_and_machinery(media_path)
        annotated_video = None
        
        try:
            if is_image(media.name):
                activities = analyze_image_activities(media_path)
            else:
                activities = analyze_video_activities(media_path)
                annotated_video = annotate_video_with_bboxes(media_path)
        except Exception as e:
            activities = f"Analysis error: {str(e)}"
        
        os.remove(media_path)
        return [
            day,
            date,
            str(detected_people),
            str(detected_machinery),
            ", ".join([f"{k}:{v}" for k,v in machine_types.items()]),
            activities,
            annotated_video
        ]
    
    except Exception as e:
        print(f"Processing error: {str(e)}")
        return [day, date, "Error", "Error", "Error", "Error", None]

# Gradio Interface
with gr.Blocks(title="Digital Site Diary", css="video {height: auto !important;}") as demo:
    gr.Markdown("# 🏗️ Digital Construction Diary")
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Site Details")
            day = gr.Textbox(label="Day Number", value="1")
            date = gr.Textbox(label="Date", value=datetime.now().strftime("%Y-%m-%d"))
            media = gr.File(label="Upload Media", file_types=["image", "video"])
            submit_btn = gr.Button("Generate Report", variant="primary")
        
        with gr.Column():
            gr.Markdown("### Safety Report")
            model_day = gr.Textbox(label="Day")
            model_date = gr.Textbox(label="Date")
            model_people = gr.Textbox(label="Worker Count")
            model_machinery = gr.Textbox(label="Machinery Count")
            model_machinery_types = gr.Textbox(label="Machinery Breakdown")
            model_activities = gr.Textbox(label="Activity Analysis", lines=4)
            model_video = gr.Video(label="Safety Annotations")

    submit_btn.click(
        process_diary,
        inputs=[day, date, media],
        outputs=[
            model_day, 
            model_date, 
            model_people, 
            model_machinery,
            model_machinery_types, 
            model_activities, 
            model_video
        ]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)