Spaces:
Sleeping
Sleeping
File size: 12,517 Bytes
f3b123c 1c7efef f3b123c 15fed3e f3b123c 15fed3e ce26954 1c7efef f3b123c 7defefc 15fed3e a9db5e7 f3b123c a9db5e7 f3b123c a9db5e7 f3b123c a9db5e7 f1e501d 7defefc a9db5e7 c46df75 f3b123c 15fed3e f3b123c 15fed3e f3b123c 2d17b60 7defefc 2d17b60 f3b123c 2d17b60 f3b123c 2d17b60 a9db5e7 f3b123c a9db5e7 2d17b60 f3b123c 2d17b60 f3b123c 2d17b60 f3b123c 2d17b60 a9db5e7 7defefc a9db5e7 7defefc a9db5e7 7defefc a9db5e7 7defefc a9db5e7 7defefc a9db5e7 7defefc a9db5e7 7defefc a9db5e7 2d17b60 6518544 7defefc 2d17b60 f3b123c 2d17b60 a9db5e7 f3b123c 2d17b60 f3b123c 2d17b60 f3b123c 2d17b60 f3b123c 2d17b60 f3b123c 2d17b60 f3b123c 2d17b60 f3b123c 6518544 2d17b60 f3b123c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import spaces
import torch
from datetime import datetime
from transformers import AutoModel, AutoTokenizer
import gradio as gr
from PIL import Image
from decord import VideoReader, cpu
import os
import gc
import tempfile
from ultralytics import YOLO
import numpy as np
import cv2
from modelscope.hub.snapshot_download import snapshot_download
from ultralytics.nn.modules import Conv, C2f
from torch import nn
import ultralytics.nn.modules as modules
# Add custom C3k2 module definition
class C3k2(nn.Module):
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
super().__init__()
c_ = int(c2 * e)
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1)
self.m = nn.Sequential(*(C2f(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
# Patch the Ultralytics module
modules.C3k2 = C3k2
# Fix GLIBCXX dependency
os.environ['LD_LIBRARY_PATH'] = '/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH'
# Initialize GPU
@spaces.GPU
def initialize_gpu():
if torch.cuda.is_available():
torch.randn(10).cuda()
initialize_gpu()
# Load YOLO model with error handling
try:
YOLO_MODEL = YOLO('best_yolov11.pt')
except Exception as e:
raise RuntimeError(f"YOLO model loading failed: {str(e)}")
# Model configuration
MODEL_NAME = 'iic/mPLUG-Owl3-7B-240728'
try:
model_dir = snapshot_download(MODEL_NAME,
cache_dir='./models',
revision='main')
except Exception as e:
raise RuntimeError(f"Model download failed: {str(e)}")
# Device setup
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# File validation
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}
def get_file_extension(filename):
return os.path.splitext(filename)[1].lower()
def is_image(filename):
return get_file_extension(filename) in IMAGE_EXTENSIONS
def is_video(filename):
return get_file_extension(filename) in VIDEO_EXTENSIONS
@spaces.GPU
def load_model_and_tokenizer():
"""Load 8-bit quantized model"""
try:
torch.cuda.empty_cache()
gc.collect()
model = AutoModel.from_pretrained(
model_dir,
attn_implementation='sdpa',
trust_remote_code=True,
load_in_8bit=True,
device_map="auto",
torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained(
model_dir,
trust_remote_code=True
)
processor = model.init_processor(tokenizer)
model.eval()
return model, tokenizer, processor
except Exception as e:
print(f"Model loading error: {str(e)}")
raise
def process_yolo_results(results):
"""Process YOLO detection results"""
machinery_mapping = {
'tower_crane': "Tower Crane",
'mobile_crane': "Mobile Crane",
'compactor': "Compactor/Roller",
'roller': "Compactor/Roller",
'bulldozer': "Bulldozer",
'dozer': "Bulldozer",
'excavator': "Excavator",
'dump_truck': "Dump Truck",
'truck': "Dump Truck",
'concrete_mixer_truck': "Concrete Mixer",
'loader': "Loader",
'pump_truck': "Pump Truck",
'pile_driver': "Pile Driver",
'grader': "Grader",
'other_vehicle': "Other Vehicle"
}
counts = {"Worker": 0, **{v: 0 for v in machinery_mapping.values()}}
for r in results:
for box in r.boxes:
if box.conf.item() < 0.5:
continue
cls_name = YOLO_MODEL.names[int(box.cls.item())].lower()
if cls_name == 'worker':
counts["Worker"] += 1
continue
for key, value in machinery_mapping.items():
if key in cls_name:
counts[value] += 1
break
return counts["Worker"], sum(counts.values()) - counts["Worker"], counts
@spaces.GPU
def detect_people_and_machinery(media_path):
"""GPU-accelerated detection"""
try:
max_people = 0
max_machines = {k: 0 for k in [
"Tower Crane", "Mobile Crane", "Compactor/Roller", "Bulldozer",
"Excavator", "Dump Truck", "Concrete Mixer", "Loader",
"Pump Truck", "Pile Driver", "Grader", "Other Vehicle"
]}
if isinstance(media_path, str) and is_video(media_path):
cap = cv2.VideoCapture(media_path)
fps = cap.get(cv2.CAP_PROP_FPS)
sample_rate = max(1, int(fps))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if cap.get(cv2.CAP_PROP_POS_FRAMES) % sample_rate == 0:
results = YOLO_MODEL(frame)
people, machines, types = process_yolo_results(results)
max_people = max(max_people, people)
for k in max_machines:
max_machines[k] = max(max_machines[k], types.get(k, 0))
cap.release()
else:
img = cv2.imread(media_path) if isinstance(media_path, str) else cv2.cvtColor(np.array(media_path), cv2.COLOR_RGB2BGR)
results = YOLO_MODEL(img)
max_people, _, types = process_yolo_results(results)
for k in max_machines:
max_machines[k] = types.get(k, 0)
filtered = {k: v for k, v in max_machines.items() if v > 0}
return max_people, sum(filtered.values()), filtered
except Exception as e:
print(f"Detection error: {str(e)}")
return 0, 0, {}
@spaces.GPU
def analyze_video_activities(video_path):
"""Video analysis with chunk processing"""
try:
model, tokenizer, processor = load_model_and_tokenizer()
responses = []
vr = VideoReader(video_path, ctx=cpu(0))
frame_step = max(1, int(vr.get_avg_fps()))
total_frames = len(vr)
for i in range(0, total_frames, 16):
end_idx = min(i+16, total_frames)
frames = [Image.fromarray(vr[j].asnumpy()) for j in range(i, end_idx)]
inputs = processor(
[{"role": "user", "content": "Analyze construction activities", "video_frames": frames}],
videos=[frames]
).to(DEVICE)
response = model.generate(**inputs, max_new_tokens=200)
responses.append(response[0])
del frames, inputs
torch.cuda.empty_cache()
del model, tokenizer, processor
return "\n".join(responses)
except Exception as e:
print(f"Video analysis error: {str(e)}")
return "Activity analysis unavailable"
@spaces.GPU
def analyze_image_activities(image_path):
"""Image analysis pipeline"""
try:
model, tokenizer, processor = load_model_and_tokenizer()
image = Image.open(image_path).convert("RGB")
inputs = processor(
[{"role": "user", "content": "Analyze construction site", "images": [image]}],
images=[image]
).to(DEVICE)
response = model.generate(**inputs, max_new_tokens=200)
del model, tokenizer, processor, image, inputs
torch.cuda.empty_cache()
return response[0]
except Exception as e:
print(f"Image analysis error: {str(e)}")
return "Activity analysis unavailable"
@spaces.GPU
def annotate_video_with_bboxes(video_path):
"""Video annotation with detection overlay"""
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
writer = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % 5 == 0:
results = YOLO_MODEL(frame)
counts = {}
for r in results:
for box in r.boxes:
if box.conf.item() < 0.5:
continue
cls_id = int(box.cls.item())
class_name = YOLO_MODEL.names[cls_id]
counts[class_name] = counts.get(class_name, 0) + 1
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
cv2.rectangle(frame, (x1, y1), (x2, y2), (0,255,0), 2)
cv2.putText(frame, f"{class_name} {box.conf.item():.2f}",
(x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1)
summary = ", ".join([f"{k}:{v}" for k,v in counts.items()])
cv2.putText(frame, summary, (10,30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 2)
writer.write(frame)
frame_count += 1
cap.release()
writer.release()
return temp_file.name
except Exception as e:
print(f"Video annotation error: {str(e)}")
return None
def process_diary(day, date, media):
"""Main processing pipeline"""
try:
if not media:
return [day, date, "No data", "No data", "No data", "No data", None]
with tempfile.NamedTemporaryFile(delete=False) as tmp:
tmp.write(media.read())
media_path = tmp.name
detected_people, detected_machinery, machine_types = detect_people_and_machinery(media_path)
annotated_video = None
try:
if is_image(media.name):
activities = analyze_image_activities(media_path)
else:
activities = analyze_video_activities(media_path)
annotated_video = annotate_video_with_bboxes(media_path)
except Exception as e:
activities = f"Analysis error: {str(e)}"
os.remove(media_path)
return [
day,
date,
str(detected_people),
str(detected_machinery),
", ".join([f"{k}:{v}" for k,v in machine_types.items()]),
activities,
annotated_video
]
except Exception as e:
print(f"Processing error: {str(e)}")
return [day, date, "Error", "Error", "Error", "Error", None]
# Gradio Interface
with gr.Blocks(title="Digital Site Diary", css="video {height: auto !important;}") as demo:
gr.Markdown("# 🏗️ Digital Construction Diary")
with gr.Row():
with gr.Column():
gr.Markdown("### Site Details")
day = gr.Textbox(label="Day Number", value="1")
date = gr.Textbox(label="Date", value=datetime.now().strftime("%Y-%m-%d"))
media = gr.File(label="Upload Media", file_types=["image", "video"])
submit_btn = gr.Button("Generate Report", variant="primary")
with gr.Column():
gr.Markdown("### Safety Report")
model_day = gr.Textbox(label="Day")
model_date = gr.Textbox(label="Date")
model_people = gr.Textbox(label="Worker Count")
model_machinery = gr.Textbox(label="Machinery Count")
model_machinery_types = gr.Textbox(label="Machinery Breakdown")
model_activities = gr.Textbox(label="Activity Analysis", lines=4)
model_video = gr.Video(label="Safety Annotations")
submit_btn.click(
process_diary,
inputs=[day, date, media],
outputs=[
model_day,
model_date,
model_people,
model_machinery,
model_machinery_types,
model_activities,
model_video
]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |