V3Test / app.py
assentian1970's picture
Update app.py
7defefc verified
raw
history blame
12.5 kB
import spaces
import torch
from datetime import datetime
from transformers import AutoModel, AutoTokenizer
import gradio as gr
from PIL import Image
from decord import VideoReader, cpu
import os
import gc
import tempfile
from ultralytics import YOLO
import numpy as np
import cv2
from modelscope.hub.snapshot_download import snapshot_download
from ultralytics.nn.modules import Conv, C2f
from torch import nn
import ultralytics.nn.modules as modules
# Add custom C3k2 module definition
class C3k2(nn.Module):
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
super().__init__()
c_ = int(c2 * e)
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1)
self.m = nn.Sequential(*(C2f(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
# Patch the Ultralytics module
modules.C3k2 = C3k2
# Fix GLIBCXX dependency
os.environ['LD_LIBRARY_PATH'] = '/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH'
# Initialize GPU
@spaces.GPU
def initialize_gpu():
if torch.cuda.is_available():
torch.randn(10).cuda()
initialize_gpu()
# Load YOLO model with error handling
try:
YOLO_MODEL = YOLO('best_yolov11.pt')
except Exception as e:
raise RuntimeError(f"YOLO model loading failed: {str(e)}")
# Model configuration
MODEL_NAME = 'iic/mPLUG-Owl3-7B-240728'
try:
model_dir = snapshot_download(MODEL_NAME,
cache_dir='./models',
revision='main')
except Exception as e:
raise RuntimeError(f"Model download failed: {str(e)}")
# Device setup
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# File validation
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}
def get_file_extension(filename):
return os.path.splitext(filename)[1].lower()
def is_image(filename):
return get_file_extension(filename) in IMAGE_EXTENSIONS
def is_video(filename):
return get_file_extension(filename) in VIDEO_EXTENSIONS
@spaces.GPU
def load_model_and_tokenizer():
"""Load 8-bit quantized model"""
try:
torch.cuda.empty_cache()
gc.collect()
model = AutoModel.from_pretrained(
model_dir,
attn_implementation='sdpa',
trust_remote_code=True,
load_in_8bit=True,
device_map="auto",
torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained(
model_dir,
trust_remote_code=True
)
processor = model.init_processor(tokenizer)
model.eval()
return model, tokenizer, processor
except Exception as e:
print(f"Model loading error: {str(e)}")
raise
def process_yolo_results(results):
"""Process YOLO detection results"""
machinery_mapping = {
'tower_crane': "Tower Crane",
'mobile_crane': "Mobile Crane",
'compactor': "Compactor/Roller",
'roller': "Compactor/Roller",
'bulldozer': "Bulldozer",
'dozer': "Bulldozer",
'excavator': "Excavator",
'dump_truck': "Dump Truck",
'truck': "Dump Truck",
'concrete_mixer_truck': "Concrete Mixer",
'loader': "Loader",
'pump_truck': "Pump Truck",
'pile_driver': "Pile Driver",
'grader': "Grader",
'other_vehicle': "Other Vehicle"
}
counts = {"Worker": 0, **{v: 0 for v in machinery_mapping.values()}}
for r in results:
for box in r.boxes:
if box.conf.item() < 0.5:
continue
cls_name = YOLO_MODEL.names[int(box.cls.item())].lower()
if cls_name == 'worker':
counts["Worker"] += 1
continue
for key, value in machinery_mapping.items():
if key in cls_name:
counts[value] += 1
break
return counts["Worker"], sum(counts.values()) - counts["Worker"], counts
@spaces.GPU
def detect_people_and_machinery(media_path):
"""GPU-accelerated detection"""
try:
max_people = 0
max_machines = {k: 0 for k in [
"Tower Crane", "Mobile Crane", "Compactor/Roller", "Bulldozer",
"Excavator", "Dump Truck", "Concrete Mixer", "Loader",
"Pump Truck", "Pile Driver", "Grader", "Other Vehicle"
]}
if isinstance(media_path, str) and is_video(media_path):
cap = cv2.VideoCapture(media_path)
fps = cap.get(cv2.CAP_PROP_FPS)
sample_rate = max(1, int(fps))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if cap.get(cv2.CAP_PROP_POS_FRAMES) % sample_rate == 0:
results = YOLO_MODEL(frame)
people, machines, types = process_yolo_results(results)
max_people = max(max_people, people)
for k in max_machines:
max_machines[k] = max(max_machines[k], types.get(k, 0))
cap.release()
else:
img = cv2.imread(media_path) if isinstance(media_path, str) else cv2.cvtColor(np.array(media_path), cv2.COLOR_RGB2BGR)
results = YOLO_MODEL(img)
max_people, _, types = process_yolo_results(results)
for k in max_machines:
max_machines[k] = types.get(k, 0)
filtered = {k: v for k, v in max_machines.items() if v > 0}
return max_people, sum(filtered.values()), filtered
except Exception as e:
print(f"Detection error: {str(e)}")
return 0, 0, {}
@spaces.GPU
def analyze_video_activities(video_path):
"""Video analysis with chunk processing"""
try:
model, tokenizer, processor = load_model_and_tokenizer()
responses = []
vr = VideoReader(video_path, ctx=cpu(0))
frame_step = max(1, int(vr.get_avg_fps()))
total_frames = len(vr)
for i in range(0, total_frames, 16):
end_idx = min(i+16, total_frames)
frames = [Image.fromarray(vr[j].asnumpy()) for j in range(i, end_idx)]
inputs = processor(
[{"role": "user", "content": "Analyze construction activities", "video_frames": frames}],
videos=[frames]
).to(DEVICE)
response = model.generate(**inputs, max_new_tokens=200)
responses.append(response[0])
del frames, inputs
torch.cuda.empty_cache()
del model, tokenizer, processor
return "\n".join(responses)
except Exception as e:
print(f"Video analysis error: {str(e)}")
return "Activity analysis unavailable"
@spaces.GPU
def analyze_image_activities(image_path):
"""Image analysis pipeline"""
try:
model, tokenizer, processor = load_model_and_tokenizer()
image = Image.open(image_path).convert("RGB")
inputs = processor(
[{"role": "user", "content": "Analyze construction site", "images": [image]}],
images=[image]
).to(DEVICE)
response = model.generate(**inputs, max_new_tokens=200)
del model, tokenizer, processor, image, inputs
torch.cuda.empty_cache()
return response[0]
except Exception as e:
print(f"Image analysis error: {str(e)}")
return "Activity analysis unavailable"
@spaces.GPU
def annotate_video_with_bboxes(video_path):
"""Video annotation with detection overlay"""
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
writer = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % 5 == 0:
results = YOLO_MODEL(frame)
counts = {}
for r in results:
for box in r.boxes:
if box.conf.item() < 0.5:
continue
cls_id = int(box.cls.item())
class_name = YOLO_MODEL.names[cls_id]
counts[class_name] = counts.get(class_name, 0) + 1
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
cv2.rectangle(frame, (x1, y1), (x2, y2), (0,255,0), 2)
cv2.putText(frame, f"{class_name} {box.conf.item():.2f}",
(x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1)
summary = ", ".join([f"{k}:{v}" for k,v in counts.items()])
cv2.putText(frame, summary, (10,30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 2)
writer.write(frame)
frame_count += 1
cap.release()
writer.release()
return temp_file.name
except Exception as e:
print(f"Video annotation error: {str(e)}")
return None
def process_diary(day, date, media):
"""Main processing pipeline"""
try:
if not media:
return [day, date, "No data", "No data", "No data", "No data", None]
with tempfile.NamedTemporaryFile(delete=False) as tmp:
tmp.write(media.read())
media_path = tmp.name
detected_people, detected_machinery, machine_types = detect_people_and_machinery(media_path)
annotated_video = None
try:
if is_image(media.name):
activities = analyze_image_activities(media_path)
else:
activities = analyze_video_activities(media_path)
annotated_video = annotate_video_with_bboxes(media_path)
except Exception as e:
activities = f"Analysis error: {str(e)}"
os.remove(media_path)
return [
day,
date,
str(detected_people),
str(detected_machinery),
", ".join([f"{k}:{v}" for k,v in machine_types.items()]),
activities,
annotated_video
]
except Exception as e:
print(f"Processing error: {str(e)}")
return [day, date, "Error", "Error", "Error", "Error", None]
# Gradio Interface
with gr.Blocks(title="Digital Site Diary", css="video {height: auto !important;}") as demo:
gr.Markdown("# 🏗️ Digital Construction Diary")
with gr.Row():
with gr.Column():
gr.Markdown("### Site Details")
day = gr.Textbox(label="Day Number", value="1")
date = gr.Textbox(label="Date", value=datetime.now().strftime("%Y-%m-%d"))
media = gr.File(label="Upload Media", file_types=["image", "video"])
submit_btn = gr.Button("Generate Report", variant="primary")
with gr.Column():
gr.Markdown("### Safety Report")
model_day = gr.Textbox(label="Day")
model_date = gr.Textbox(label="Date")
model_people = gr.Textbox(label="Worker Count")
model_machinery = gr.Textbox(label="Machinery Count")
model_machinery_types = gr.Textbox(label="Machinery Breakdown")
model_activities = gr.Textbox(label="Activity Analysis", lines=4)
model_video = gr.Video(label="Safety Annotations")
submit_btn.click(
process_diary,
inputs=[day, date, media],
outputs=[
model_day,
model_date,
model_people,
model_machinery,
model_machinery_types,
model_activities,
model_video
]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)