File size: 24,390 Bytes
dbee618
 
 
 
 
 
 
 
 
 
 
4e47df7
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e47df7
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e47df7
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e47df7
 
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e47df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbee618
 
 
 
 
 
4e47df7
dbee618
4e47df7
 
 
 
 
 
 
 
 
 
 
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e47df7
 
 
 
 
 
 
dbee618
 
 
 
 
 
4e47df7
 
 
 
 
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e47df7
dbee618
 
 
 
 
4e47df7
 
 
 
 
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e47df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbee618
 
4e47df7
dbee618
 
 
 
 
4e47df7
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e47df7
dbee618
 
 
4e47df7
 
dbee618
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import gradio as gr
import librosa
import numpy as np
import re
import os
import time
import struct
import subprocess
import matplotlib.font_manager as fm
from typing import Tuple, List, Dict
from mutagen.flac import FLAC
from moviepy import CompositeVideoClip, TextClip, VideoClip, AudioFileClip, ImageClip

# --- Font Scanning and Management ---
def get_font_display_name(font_path: str) -> Tuple[str, str]:
    """
    A robust TTF/TTC parser based on the user's final design.
    It reads the 'name' table to find the localized "Full Font Name" (nameID=4).
    Returns a tuple of (display_name, language_tag {'zh'/'ja'/'ko'/'en'/'other'}).
    """
    def decode_name_string(name_bytes: bytes, platform_id: int, encoding_id: int) -> str:
        """Decodes the name string based on platform and encoding IDs."""
        try:
            if platform_id == 3 and encoding_id in [1, 10]: # Windows, Unicode
                return name_bytes.decode('utf_16_be').strip('\x00')
            elif platform_id == 1 and encoding_id == 0: # Macintosh, Roman
                return name_bytes.decode('mac_roman').strip('\x00')
            elif platform_id == 0: # Unicode
                 return name_bytes.decode('utf_16_be').strip('\x00')
            else: # Fallback
                return name_bytes.decode('utf_8', errors='ignore').strip('\x00')
        except Exception:
            return None

    try:
        with open(font_path, 'rb') as f: data = f.read()
        def read_ushort(offset): return struct.unpack('>H', data[offset:offset+2])[0]
        def read_ulong(offset): return struct.unpack('>I', data[offset:offset+4])[0]
        
        font_offsets = [0]
        # Check for TTC (TrueType Collection) header
        if data[:4] == b'ttcf':
            num_fonts = read_ulong(8)
            font_offsets = [read_ulong(12 + i * 4) for i in range(num_fonts)]
        
        # For simplicity, we only parse the first font in a TTC
        font_offset = font_offsets[0]
        
        num_tables = read_ushort(font_offset + 4)
        name_table_offset = -1
        # Locate the 'name' table
        for i in range(num_tables):
            entry_offset = font_offset + 12 + i * 16
            tag = data[entry_offset:entry_offset+4]
            if tag == b'name':
                name_table_offset = read_ulong(entry_offset + 8); break
        
        if name_table_offset == -1: return None, None
        
        count, string_offset = read_ushort(name_table_offset + 2), read_ushort(name_table_offset + 4)
        name_candidates = {}
        # Iterate through all name records
        for i in range(count):
            rec_offset = name_table_offset + 6 + i * 12
            platform_id, encoding_id, language_id, name_id, length, offset = struct.unpack('>HHHHHH', data[rec_offset:rec_offset+12])

            if name_id == 4:  # We only care about the "Full Font Name"
                string_pos = name_table_offset + string_offset + offset
                value = decode_name_string(data[string_pos : string_pos + length], platform_id, encoding_id)
                
                if value:
                    # Store candidates based on language ID
                    if language_id in [1028, 2052, 3076, 4100, 5124]: name_candidates["zh"] = value # Chinese
                    elif language_id == 1041: name_candidates["ja"] = value # Japanese
                    elif language_id == 1042: name_candidates["ko"] = value # Korean
                    elif language_id in [1033, 0]: name_candidates["en"] = value # English
                    else:
                        if "other" not in name_candidates: name_candidates["other"] = value
        
        # Return the best candidate based on language priority
        if name_candidates.get("zh"): return name_candidates.get("zh"), "zh"
        if name_candidates.get("ja"): return name_candidates.get("ja"), "ja"
        if name_candidates.get("ko"): return name_candidates.get("ko"), "ko"
        if name_candidates.get("other"): return name_candidates.get("other"), "other"
        if name_candidates.get("en"): return name_candidates.get("en"), "en"
        return None, None
        
    except Exception:
        return None, None

def get_font_data() -> Tuple[Dict[str, str], List[str]]:
    """
    Scans system fonts, parses their display names, and returns a sorted list
    with a corresponding name-to-path map.
    """
    font_map = {}
    found_names = [] # Stores (display_name, is_fallback, lang_tag)
    
    # Scan for both .ttf and .ttc files
    ttf_files = fm.findSystemFonts(fontpaths=None, fontext='ttf')
    ttc_files = fm.findSystemFonts(fontpaths=None, fontext='ttc')
    all_font_files = list(set(ttf_files + ttc_files))
    
    for path in all_font_files:
        display_name, lang_tag = get_font_display_name(path)
        is_fallback = display_name is None
        
        if is_fallback:
            # Create a fallback name from the filename
            display_name = os.path.splitext(os.path.basename(path))[0].replace('-', ' ').replace('_', ' ').title()
            lang_tag = 'fallback'
            
        if display_name and display_name not in font_map:
            font_map[display_name] = path
            found_names.append((display_name, is_fallback, lang_tag))
            
    # Define sort priority for languages
    sort_order = {'zh': 0, 'ja': 1, 'ko': 2, 'en': 3, 'other': 4, 'fallback': 5}
    
    # Sort by priority, then alphabetically
    found_names.sort(key=lambda x: (sort_order.get(x[2], 99), x[0]))
    
    sorted_display_names = [name for name, _, _ in found_names]
    return font_map, sorted_display_names

print("Scanning system fonts and parsing names...")
SYSTEM_FONTS_MAP, FONT_DISPLAY_NAMES = get_font_data()
print(f"Scan complete. Found {len(FONT_DISPLAY_NAMES)} available fonts.")


# --- CUE Sheet Parsing Logic ---
def cue_time_to_seconds(time_str: str) -> float:
    try:
        minutes, seconds, frames = map(int, time_str.split(':'))
        return minutes * 60 + seconds + frames / 75.0
    except ValueError:
        return 0.0

def parse_cue_sheet_manually(cue_data: str) -> List[Dict[str, any]]:
    tracks = []
    current_track_info = None
    for line in cue_data.splitlines():
        line = line.strip()
        if line.upper().startswith('TRACK'):
            if current_track_info and 'title' in current_track_info and 'start_time' in current_track_info:
                tracks.append(current_track_info)
            current_track_info = {}
            continue
        if current_track_info is not None:
            title_match = re.search(r'TITLE\s+"(.*?)"', line, re.IGNORECASE)
            if title_match:
                current_track_info['title'] = title_match.group(1)
                continue
            index_match = re.search(r'INDEX\s+01\s+(\d{2}:\d{2}:\d{2})', line, re.IGNORECASE)
            if index_match:
                current_track_info['start_time'] = cue_time_to_seconds(index_match.group(1))
                continue
    if current_track_info and 'title' in current_track_info and 'start_time' in current_track_info:
        tracks.append(current_track_info)
    return tracks


# --- FFmpeg Framerate Conversion ---
def increase_video_framerate(input_path: str, output_path: str, target_fps: int = 24):
    """
    Uses FFmpeg to increase the video's framerate without re-encoding.
    This is extremely fast as it only copies streams and changes metadata.
    
    Args:
        input_path (str): Path to the low-framerate video file.
        output_path (str): Path for the final, high-framerate video file.
        target_fps (int): The desired output framerate.
    """
    print(f"Increasing framerate of '{input_path}' to {target_fps} FPS...")
    
    # Construct the FFmpeg command based on the user's specification
    command = [
        'ffmpeg',
        '-y',  # Overwrite output file if exists
        '-i', input_path,
        '-map', '0',            # Map all streams (video, audio, subtitles)
        '-vf', 'fps=24',        # Use fps filter to convert framerate to 24
        '-c:v', 'libx264',      # Re-encode video with H.264 codec
        '-preset', 'fast',      # Encoding speed/quality tradeoff
        '-crf', '18',           # Quality (lower is better)
        '-c:a', 'copy',         # Copy audio without re-encoding
        output_path
    ]
    
    try:
        # Execute the command
        # Using capture_output to hide ffmpeg logs from the main console unless an error occurs
        result = subprocess.run(command, check=True, capture_output=True, text=True)
        print("Framerate increase successful.")
    except FileNotFoundError:
        # This error occurs if FFmpeg is not installed or not in the system's PATH
        raise gr.Error("FFmpeg not found. Please ensure FFmpeg is installed and accessible in your system's PATH.")
    except subprocess.CalledProcessError as e:
        # This error occurs if FFmpeg returns a non-zero exit code
        print("FFmpeg error output:\n", e.stderr)
        raise gr.Error(f"FFmpeg failed to increase the framerate. See console for details. Error: {e.stderr}")


# --- Main Processing Function ---
def process_audio_to_video(
    audio_path: str, image_paths: List[str],
    spec_fg_color: str, spec_bg_color: str, 
    font_name: str, font_size: int, font_color: str,
    font_bg_color: str, font_bg_alpha: float,
    pos_h: str, pos_v: str
) -> str:
    if not audio_path: raise gr.Error("Please upload an audio file first.")
    if not font_name: raise gr.Error("Please select a font from the list.")
    
    # Define paths for temporary and final files
    timestamp = int(time.time())
    temp_fps1_path = f"temp_{timestamp}_fps1.mp4"
    final_output_path = f"final_video_{timestamp}_fps24.mp4"

    WIDTH, HEIGHT, RENDER_FPS = 1280, 720, 1 # Render at 1 FPS
    PLAYBACK_FPS = 24 # Final playback framerate
    
    # --- A robust color parser for hex and rgb() strings ---
    def parse_color_to_rgb(color_str: str) -> Tuple[int, int, int]:
        """
        Parses a color string which can be in hex format (#RRGGBB) or
        rgb format (e.g., "rgb(255, 128, 0)").
        Returns a tuple of (R, G, B).
        """
        color_str = color_str.strip()
        if color_str.startswith('#'):
            # Handle hex format
            hex_val = color_str.lstrip('#')
            if len(hex_val) == 3: # Handle shorthand hex like #FFF
                hex_val = "".join([c*2 for c in hex_val])
            return tuple(int(hex_val[i:i+2], 16) for i in (0, 2, 4))
        elif color_str.startswith('rgb'):
            # Handle rgb format
            try:
                numbers = re.findall(r'\d+', color_str)
                return tuple(int(n) for n in numbers[:3])
            except (ValueError, IndexError):
                raise ValueError(f"Could not parse rgb color string: {color_str}")
        else:
            raise ValueError(f"Unknown color format: {color_str}")

    # Use the new robust parser for all color inputs
    fg_rgb, bg_rgb = parse_color_to_rgb(spec_fg_color), parse_color_to_rgb(spec_bg_color)
    grid_rgb = tuple(min(c + 40, 255) for c in bg_rgb)
    
    # Wrap the entire process in a try...finally block to ensure cleanup
    try:
        y, sr = librosa.load(audio_path, sr=None, mono=True)
        duration = librosa.get_duration(y=y, sr=sr)
        
        # --- Image Processing Logic ---
        image_clips = []
        # Check if any images were uploaded.
        if image_paths and len(image_paths) > 0:
            print(f"Found {len(image_paths)} images to process.")
            
            # First, try to parse the CUE sheet from the audio file.
            tracks = []
            if audio_path.lower().endswith('.flac'):
                try:
                    audio_meta = FLAC(audio_path)
                    if 'cuesheet' in audio_meta.tags:
                        tracks = parse_cue_sheet_manually(audio_meta.tags['cuesheet'][0])
                        print(f"Successfully parsed {len(tracks)} tracks from CUE sheet.")
                except Exception as e:
                    print(f"Warning: Could not read or parse CUE sheet: {e}")

            # Mode 1: If CUE tracks match the number of images, align them.
            if tracks and len(tracks) == len(image_paths):
                print("Image count matches track count. Aligning images with tracks.")
                for i, (track, img_path) in enumerate(zip(tracks, image_paths)):
                    start_time = track.get('start_time', 0)
                    # The end time of a track is the start time of the next, or the total duration for the last track.
                    end_time = tracks[i+1].get('start_time', duration) if i + 1 < len(tracks) else duration
                    img_duration = end_time - start_time
                    if img_duration <= 0: continue
                    
                    # Create an ImageClip for the duration of the track.
                    clip = (ImageClip(img_path)
                            .set_duration(img_duration)
                            .set_start(start_time)
                            .resize(width=WIDTH, height=HEIGHT)) # Resize to fit video dimensions
                    image_clips.append(clip)
            
            # Mode 2: If no CUE or mismatch, distribute images evenly across the audio duration.
            else:
                if tracks: print("Image count does not match track count. Distributing images evenly.")
                else: print("No CUE sheet found. Distributing images evenly.")
                
                img_duration = duration / len(image_paths)
                for i, img_path in enumerate(image_paths):
                    start_time = i * img_duration
                    # Create an ImageClip for a calculated segment of time.
                    clip = (ImageClip(img_path)
                            .set_duration(img_duration)
                            .set_start(start_time)
                            .resize(width=WIDTH, height=HEIGHT)) # Resize to fit video dimensions
                    image_clips.append(clip)

        # Spectrogram calculation
        N_FFT, HOP_LENGTH, N_BANDS = 2048, 512, 32
        MIN_DB, MAX_DB = -80.0, 0.0
        S_mel = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=N_FFT, hop_length=HOP_LENGTH, n_mels=N_BANDS, fmax=sr/2)
        S_mel_db = librosa.power_to_db(S_mel, ref=np.max)
        
        # Frame generation logic for the spectrogram
        def frame_generator(t):
            # If images are used as background, the spectrogram's own background should be transparent.
            # Otherwise, use the selected background color.
            # Here, we will use a simple opacity setting on the final clip, so we always generate the frame.
            frame_bg = bg_rgb if not image_clips else (0,0,0) # Use black if it will be made transparent later
            frame = np.full((HEIGHT, WIDTH, 3), frame_bg, dtype=np.uint8)

            # Draw the grid lines only if no images are being used.
            if not image_clips:
                for i in range(1, 9):
                    y_pos = int(i * (HEIGHT / 9)); frame[y_pos-1:y_pos, :] = grid_rgb

            time_idx = int((t / duration) * (S_mel_db.shape[1] - 1))
            bar_width = WIDTH / N_BANDS
            for i in range(N_BANDS):
                energy_db = S_mel_db[i, time_idx]
                norm_height = np.clip((energy_db - MIN_DB) / (MAX_DB - MIN_DB), 0, 1)
                bar_height = int(norm_height * HEIGHT)
                if bar_height < 1: continue
                x_start, x_end = int(i * bar_width), int((i + 1) * bar_width - 2)
                y_start = HEIGHT - bar_height
                for k in range(bar_height):
                    y_pos, ratio = y_start + k, k / bar_height
                    r, g, b = (int(c1 * (1-ratio) + c2 * ratio) for c1, c2 in zip(fg_rgb, bg_rgb))
                    frame[y_pos, x_start:x_end] = (r, g, b)
            return frame
            
        video_clip = VideoClip(frame_function=frame_generator, duration=duration)

        # --- NEW: Set Spectrogram Opacity ---
        # If image clips were created, make the spectrogram layer 50% transparent.
        if image_clips:
            print("Applying 50% opacity to spectrogram layer.")
            video_clip = video_clip.set_opacity(0.5)

        audio_clip = AudioFileClip(audio_path)
        
        # CUE Sheet title overlay logic
        text_clips = []
        if audio_path.lower().endswith('.flac'):
            try:
                audio_meta = FLAC(audio_path)
                if 'cuesheet' in audio_meta.tags:
                    tracks = parse_cue_sheet_manually(audio_meta.tags['cuesheet'][0])
            except Exception:
                pass # Already handled above
        
        if tracks:
            font_path = SYSTEM_FONTS_MAP.get(font_name)
            if not font_path: raise gr.Error(f"Font path for '{font_name}' not found!")
            
            # Use the robust parser for text colors as well
            font_bg_rgb = parse_color_to_rgb(font_bg_color)
            font_bg_rgba = (*font_bg_rgb, int(font_bg_alpha * 255))

            position = (pos_h.lower(), pos_v.lower())

            print(f"Using font: {font_name}, Size: {font_size}, Position: {position}")

            for i, track in enumerate(tracks):
                start_time = track.get('start_time', 0)
                title, end_time = track.get('title', 'Unknown Track'), tracks[i+1].get('start_time', duration) if i + 1 < len(tracks) else duration
                text_duration = end_time - start_time
                if text_duration <= 0: continue
                
                # Note: TextClip's `color` argument can handle color names like 'white' directly
                txt_clip = (TextClip(text=f"{i+1}. {title}", font_size=font_size, color=font_color, font=font_path, bg_color=f'rgba({font_bg_rgba[0]}, {font_bg_rgba[1]}, {font_bg_rgba[2]}, {font_bg_alpha})')
                            .with_position(position)
                            .with_duration(text_duration)
                            .with_start(start_time))
                text_clips.append(txt_clip)

        # --- Clip Composition ---
        # The final composition order is important: images at the bottom, then spectrogram, then text.
        # The base layer is now the list of image clips.
        final_layers = image_clips + [video_clip] + text_clips
        final_clip = CompositeVideoClip(final_layers).with_audio(audio_clip)
        
        # Step 1: Render the slow, 1 FPS intermediate file
        print(f"Step 1/2: Rendering base video at {RENDER_FPS} FPS...")
        try:
            # Attempt to copy audio stream directly
            print("Attempting to copy audio stream directly...")
            final_clip.write_videofile(
                temp_fps1_path, codec="libx264", audio_codec="copy", fps=RENDER_FPS, 
                logger='bar', threads=os.cpu_count(), preset='ultrafast'
            )
            print("Audio stream successfully copied!")
        except Exception:
            # Fallback to AAC encoding if copy fails
            print("Direct audio copy failed, falling back to AAC encoding...")
            final_clip.write_videofile(
                temp_fps1_path, codec="libx264", audio_codec="aac", fps=RENDER_FPS, 
                logger='bar', threads=os.cpu_count(), preset='ultrafast'
            )
            print("AAC audio encoding complete.")
        
        final_clip.close()

        # Step 2: Use FFmpeg to quickly increase the framerate to 24 FPS
        print(f"\nStep 2/2: Remuxing video to {PLAYBACK_FPS} FPS...")
        increase_video_framerate(temp_fps1_path, final_output_path, target_fps=PLAYBACK_FPS)
        
        return final_output_path
        
    except Exception as e:
        # Re-raise the exception to be caught and displayed by Gradio
        raise e
    finally:
        # Step 3: Clean up the temporary file regardless of success or failure
        if os.path.exists(temp_fps1_path):
            print(f"Cleaning up temporary file: {temp_fps1_path}")
            os.remove(temp_fps1_path)

# --- Gradio UI ---
with gr.Blocks(title="Spectrogram Video Generator") as iface:
    gr.Markdown("# Spectrogram Video Generator")
    with gr.Row():
        with gr.Column(scale=1):
            audio_input = gr.Audio(type="filepath", label="Upload Audio File")
            
            # --- Image Upload Component ---
            gr.Markdown(
                """
                ### Background Image Options (Optional)

                Upload one or more images to create a dynamic background for the video. The display behavior changes based on your audio file and the number of images provided.

                *   **Mode 1: CUE Sheet Synchronization**
                    If your audio file contains an embedded CUE sheet AND the number of images you upload **exactly matches** the number of tracks, the images will be synchronized with the tracks. The first image will appear during the first track, the second during the second, and so on.

                *   **Mode 2: Even Time Distribution**
                    In all other cases (e.g., the audio has no CUE sheet, or the number of images and tracks do not match), the images will be displayed sequentially. The total duration of the video will be divided equally among all uploaded images.

                **Note:** When any image is used as a background, the spectrogram visualizer will automatically become **semi-transparent** to ensure the background is clearly visible.
                """
            )
            image_uploads = gr.File(
                label="Upload Background Images", 
                file_count="multiple", # Allow multiple files
                file_types=["image"]   # Accept only image formats
            )
            
            with gr.Accordion("Visualizer Options", open=True):
                fg_color = gr.ColorPicker(value="#71808c", label="Spectrogram Bar Top Color")
                bg_color = gr.ColorPicker(value="#2C3E50", label="Background Color (if no images)")
            
            with gr.Accordion("Text Overlay Options", open=True):
                gr.Markdown(
                    "**Note:** These options only take effect if the input audio file has an embedded CUE sheet."
                )
                gr.Markdown("---")
                gr.Markdown("If your CUE sheet contains non-English characters, please select a compatible font.")
                default_font = "Microsoft JhengHei" if "Microsoft JhengHei" in FONT_DISPLAY_NAMES else ("Arial" if "Arial" in FONT_DISPLAY_NAMES else (FONT_DISPLAY_NAMES[0] if FONT_DISPLAY_NAMES else None))
                font_name_dd = gr.Dropdown(choices=FONT_DISPLAY_NAMES, value=default_font, label="Font Family")
                
                with gr.Row():
                    font_size_slider = gr.Slider(minimum=12, maximum=128, value=40, step=1, label="Font Size")
                    font_color_picker = gr.ColorPicker(value="#FFFFFF", label="Font Color")
                
                with gr.Row():
                    font_bg_color_picker = gr.ColorPicker(value="#000000", label="Text BG Color")
                    font_bg_alpha_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.6, step=0.05, label="Text BG Opacity")
                
                gr.Markdown("Text Position")
                with gr.Row():
                    pos_h_radio = gr.Radio(["left", "center", "right"], value="center", label="Horizontal Align")
                    pos_v_radio = gr.Radio(["top", "center", "bottom"], value="bottom", label="Vertical Align")
            
            submit_btn = gr.Button("Generate Video", variant="primary")
            
        with gr.Column(scale=2):
            video_output = gr.Video(label="Generated Video")
    
    # --- Add image_uploads to the inputs list ---
    submit_btn.click(
        fn=process_audio_to_video,
        inputs=[
            audio_input, image_uploads,
            fg_color, bg_color, 
            font_name_dd, font_size_slider, font_color_picker,
            font_bg_color_picker, font_bg_alpha_slider,
            pos_h_radio, pos_v_radio
        ],
        outputs=video_output
    )

if __name__ == "__main__":
    iface.launch(inbrowser=True)