File size: 8,513 Bytes
c316f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import streamlit as st
import numpy as np
from scipy.sparse import csr_matrix
import pandas as pd
import time
import graphviz
# -----------------------------------------------------------------------------
# Title and Overview
# -----------------------------------------------------------------------------
st.title("Cortical Column Theory: Self-Modifying Memory Systems")
st.markdown("""
**Theory Overview:**
This application demonstrates a model inspired by Cortical Column Theory where the ability to self-modify is paramount.
- **Episodic Memory (E):** Represents short-term, conscious experience (~5–10 seconds) via introspective attention.
- **Semantic Memory (K):** Cumulative knowledge built over time (Mass + Agency), enabling free energy formation.
- **Neural Connectivity:** Modeled via sparse matrices to mimic voting neurons in cortical columns.
- **Social Bonding:** Hierarchical connections—from teams to humanity—facilitate maximum free energy (or ‘love’) at a cellular level.
These components interact in a dynamic system, much like how neocortical columns steer signals via voting neurons and dendritic excitement.
""")
# -----------------------------------------------------------------------------
# Create Tabs for Organized UI Sections
# -----------------------------------------------------------------------------
tabs = st.tabs([
"Theory",
"Neural Connectivity",
"Concept Graph",
"Interactive Components",
"NPS Score",
"Extra UI"
])
# -----------------------------------------------------------------------------
# Tab 1: Theory Explanation
# -----------------------------------------------------------------------------
with tabs[0]:
st.header("Cortical Column Theory")
st.write("""
The central hypothesis is that life’s essential characteristic is its ability to self-modify.
In this model:
- **Episodic Memory (E)** functions as immediate, introspective attention over a 5–10 second window.
- **Semantic Memory (K)** aggregates past experiences into a knowledge base, growing as new connections (graph edges) form.
- **Free Energy** is produced as the system scales its pair bonds—from simple interactions (e.g., between two neurons) to complex networks (teams, organizations, and ultimately humanity).
- **Love (❤️)** is conceptualized as the maximal connection, representing the highest free energy state and optimal bond formation.
This theoretical framework abstracts how biological neural circuits might mirror self-coding systems in AI.
""")
# -----------------------------------------------------------------------------
# Tab 2: Neural Connectivity with Sparse Matrix
# -----------------------------------------------------------------------------
with tabs[1]:
st.header("Neural Connectivity Sparse Matrix")
st.write("Below is a demonstration of a sparse matrix simulating neural connectivity within a cortical column:")
# Create a random binary matrix (10 neurons, ~20% connectivity)
size = 10
density = 0.2
random_matrix = np.random.binomial(1, density, size=(size, size))
sparse_matrix = csr_matrix(random_matrix)
st.write("Sparse Matrix Representation:")
st.write(sparse_matrix)
st.write("Dense Matrix Representation:")
st.write(random_matrix)
# -----------------------------------------------------------------------------
# Tab 3: Emoji and Concept Graph UI
# -----------------------------------------------------------------------------
with tabs[2]:
st.header("Emoji and Concept Graph")
st.write("Visualizing core concepts with emojis where each node represents a key component of the theory:")
# Graphviz diagram using emojis and labels for key concepts.
graph_source = """
digraph G {
"Cortical Column 🧠" -> "Episodic Memory (E) ⏱️" [label="short-term"];
"Cortical Column 🧠" -> "Semantic Memory (K) 📚" [label="knowledge"];
"Episodic Memory (E) ⏱️" -> "Introspective Attention 🔍" [label="focus"];
"Semantic Memory (K) 📚" -> "Free Energy ⚡" [label="agency"];
"Free Energy ⚡" -> "Love ❤️" [label="bond"];
"Love ❤️" -> "Humanity 🌍" [label="connection"];
}
"""
st.graphviz_chart(graph_source)
# -----------------------------------------------------------------------------
# Tab 4: Interactive UI Components
# -----------------------------------------------------------------------------
with tabs[3]:
st.header("Interactive Components Demonstration")
st.subheader("Input and Selection")
concept_input = st.text_input("Enter a concept label:", "Cortical Column Theory")
time_window = st.slider("Select attention window (seconds)", 1, 10, 5)
memory_type = st.radio("Select memory type", ("Episodic (E)", "Semantic (K)"))
neural_component = st.selectbox("Choose a neural component", ["Neuron", "Synapse", "Dendrite", "Axon"])
additional_components = st.multiselect("Select additional components", ["Free Energy", "Agency", "Mass", "Bond"])
st.subheader("Activation Controls")
if st.checkbox("Activate Introspective Attention"):
st.write("Introspective Attention Activated!")
if st.button("Execute Self-Modification Cycle"):
st.write("**Self-Modification Cycle Executed**")
st.write(f"Memory Type Selected: {memory_type}")
st.write(f"Attention Window: {time_window} seconds")
st.write(f"Neural Component: {neural_component}")
st.write(f"Additional Components: {additional_components}")
st.subheader("Media Components")
st.image("https://via.placeholder.com/150.png?text=Neural+Network", caption="Neural Network Representation")
# Note: The video below is a placeholder.
st.video("https://www.youtube.com/watch?v=dQw4w9WgXcQ")
st.subheader("Data and JSON Display")
df = pd.DataFrame({
"Component": ["Neuron", "Synapse", "Dendrite", "Axon"],
"Status": ["Active", "Active", "Inactive", "Active"]
})
st.dataframe(df)
sample_json = {
"Episodic": {"Duration": f"{time_window} sec", "Type": memory_type},
"Semantic": {"Label": concept_input}
}
st.json(sample_json)
st.subheader("File Upload and Color Picker")
uploaded_file = st.file_uploader("Upload a configuration file")
color = st.color_picker("Pick a highlight color", "#00f900")
st.write("Selected Color:", color)
st.subheader("Date and Time Inputs")
date_input = st.date_input("Select a date")
time_input = st.time_input("Select a time")
st.write("Date:", date_input, "Time:", time_input)
st.subheader("Progress Bar Simulation")
progress_bar = st.progress(0)
for percent_complete in range(101):
progress_bar.progress(percent_complete)
time.sleep(0.01)
st.subheader("Metrics and Download Button")
st.metric(label="Introspective Score", value=time_window*10, delta="+5")
st.download_button("Download Configuration", data="configuration data", file_name="config.txt")
# -----------------------------------------------------------------------------
# Tab 5: Self Reward Learning NPS Score
# -----------------------------------------------------------------------------
with tabs[4]:
st.header("Self Reward Learning NPS Score")
nps_score = st.slider("Rate Self Reward Learning (0-10):", 0, 10, 5)
if nps_score <= 6:
nps_comment = "Needs Improvement - Consider refining self-modification algorithms."
elif nps_score <= 8:
nps_comment = "Good, but can be better - Fine-tuning required."
else:
nps_comment = "Excellent! - The system demonstrates robust self-reward learning."
st.write(f"**NPS Score:** {nps_score} - {nps_comment}")
# -----------------------------------------------------------------------------
# Tab 6: Extra UI Components for Extended Demonstration
# -----------------------------------------------------------------------------
with tabs[5]:
st.header("Extra UI Components")
with st.expander("More Details"):
st.write("Additional explanations or interactive widgets can be added here.")
col1, col2 = st.columns(2)
with col1:
st.write("**Column 1:** Additional metrics or charts.")
st.line_chart(np.random.randn(20, 1))
with col2:
st.write("**Column 2:** Other interactive elements.")
st.bar_chart(np.random.randn(20, 1))
|