File size: 8,513 Bytes
c316f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import streamlit as st
import numpy as np
from scipy.sparse import csr_matrix
import pandas as pd
import time
import graphviz

# -----------------------------------------------------------------------------
# Title and Overview
# -----------------------------------------------------------------------------
st.title("Cortical Column Theory: Self-Modifying Memory Systems")
st.markdown("""
**Theory Overview:**  
This application demonstrates a model inspired by Cortical Column Theory where the ability to self-modify is paramount.  
- **Episodic Memory (E):** Represents short-term, conscious experience (~5–10 seconds) via introspective attention.
- **Semantic Memory (K):** Cumulative knowledge built over time (Mass + Agency), enabling free energy formation.
- **Neural Connectivity:** Modeled via sparse matrices to mimic voting neurons in cortical columns.
- **Social Bonding:** Hierarchical connections—from teams to humanity—facilitate maximum free energy (or ‘love’) at a cellular level.

These components interact in a dynamic system, much like how neocortical columns steer signals via voting neurons and dendritic excitement.
""")

# -----------------------------------------------------------------------------
# Create Tabs for Organized UI Sections
# -----------------------------------------------------------------------------
tabs = st.tabs([
    "Theory", 
    "Neural Connectivity", 
    "Concept Graph", 
    "Interactive Components", 
    "NPS Score", 
    "Extra UI"
])

# -----------------------------------------------------------------------------
# Tab 1: Theory Explanation
# -----------------------------------------------------------------------------
with tabs[0]:
    st.header("Cortical Column Theory")
    st.write("""
    The central hypothesis is that life’s essential characteristic is its ability to self-modify.  
    In this model:
    
    - **Episodic Memory (E)** functions as immediate, introspective attention over a 5–10 second window.  
    - **Semantic Memory (K)** aggregates past experiences into a knowledge base, growing as new connections (graph edges) form.  
    - **Free Energy** is produced as the system scales its pair bonds—from simple interactions (e.g., between two neurons) to complex networks (teams, organizations, and ultimately humanity).  
    - **Love (❤️)** is conceptualized as the maximal connection, representing the highest free energy state and optimal bond formation.
    
    This theoretical framework abstracts how biological neural circuits might mirror self-coding systems in AI.
    """)

# -----------------------------------------------------------------------------
# Tab 2: Neural Connectivity with Sparse Matrix
# -----------------------------------------------------------------------------
with tabs[1]:
    st.header("Neural Connectivity Sparse Matrix")
    st.write("Below is a demonstration of a sparse matrix simulating neural connectivity within a cortical column:")
    
    # Create a random binary matrix (10 neurons, ~20% connectivity)
    size = 10
    density = 0.2
    random_matrix = np.random.binomial(1, density, size=(size, size))
    sparse_matrix = csr_matrix(random_matrix)
    
    st.write("Sparse Matrix Representation:")
    st.write(sparse_matrix)
    st.write("Dense Matrix Representation:")
    st.write(random_matrix)

# -----------------------------------------------------------------------------
# Tab 3: Emoji and Concept Graph UI
# -----------------------------------------------------------------------------
with tabs[2]:
    st.header("Emoji and Concept Graph")
    st.write("Visualizing core concepts with emojis where each node represents a key component of the theory:")
    
    # Graphviz diagram using emojis and labels for key concepts.
    graph_source = """
    digraph G {
        "Cortical Column 🧠" -> "Episodic Memory (E) ⏱️" [label="short-term"];
        "Cortical Column 🧠" -> "Semantic Memory (K) 📚" [label="knowledge"];
        "Episodic Memory (E) ⏱️" -> "Introspective Attention 🔍" [label="focus"];
        "Semantic Memory (K) 📚" -> "Free Energy ⚡" [label="agency"];
        "Free Energy ⚡" -> "Love ❤️" [label="bond"];
        "Love ❤️" -> "Humanity 🌍" [label="connection"];
    }
    """
    st.graphviz_chart(graph_source)

# -----------------------------------------------------------------------------
# Tab 4: Interactive UI Components
# -----------------------------------------------------------------------------
with tabs[3]:
    st.header("Interactive Components Demonstration")
    
    st.subheader("Input and Selection")
    concept_input = st.text_input("Enter a concept label:", "Cortical Column Theory")
    time_window = st.slider("Select attention window (seconds)", 1, 10, 5)
    memory_type = st.radio("Select memory type", ("Episodic (E)", "Semantic (K)"))
    neural_component = st.selectbox("Choose a neural component", ["Neuron", "Synapse", "Dendrite", "Axon"])
    additional_components = st.multiselect("Select additional components", ["Free Energy", "Agency", "Mass", "Bond"])
    
    st.subheader("Activation Controls")
    if st.checkbox("Activate Introspective Attention"):
        st.write("Introspective Attention Activated!")
    
    if st.button("Execute Self-Modification Cycle"):
        st.write("**Self-Modification Cycle Executed**")
        st.write(f"Memory Type Selected: {memory_type}")
        st.write(f"Attention Window: {time_window} seconds")
        st.write(f"Neural Component: {neural_component}")
        st.write(f"Additional Components: {additional_components}")
    
    st.subheader("Media Components")
    st.image("https://via.placeholder.com/150.png?text=Neural+Network", caption="Neural Network Representation")
    # Note: The video below is a placeholder.
    st.video("https://www.youtube.com/watch?v=dQw4w9WgXcQ")
    
    st.subheader("Data and JSON Display")
    df = pd.DataFrame({
        "Component": ["Neuron", "Synapse", "Dendrite", "Axon"],
        "Status": ["Active", "Active", "Inactive", "Active"]
    })
    st.dataframe(df)
    sample_json = {
        "Episodic": {"Duration": f"{time_window} sec", "Type": memory_type},
        "Semantic": {"Label": concept_input}
    }
    st.json(sample_json)
    
    st.subheader("File Upload and Color Picker")
    uploaded_file = st.file_uploader("Upload a configuration file")
    color = st.color_picker("Pick a highlight color", "#00f900")
    st.write("Selected Color:", color)
    
    st.subheader("Date and Time Inputs")
    date_input = st.date_input("Select a date")
    time_input = st.time_input("Select a time")
    st.write("Date:", date_input, "Time:", time_input)
    
    st.subheader("Progress Bar Simulation")
    progress_bar = st.progress(0)
    for percent_complete in range(101):
        progress_bar.progress(percent_complete)
        time.sleep(0.01)
    
    st.subheader("Metrics and Download Button")
    st.metric(label="Introspective Score", value=time_window*10, delta="+5")
    st.download_button("Download Configuration", data="configuration data", file_name="config.txt")

# -----------------------------------------------------------------------------
# Tab 5: Self Reward Learning NPS Score
# -----------------------------------------------------------------------------
with tabs[4]:
    st.header("Self Reward Learning NPS Score")
    nps_score = st.slider("Rate Self Reward Learning (0-10):", 0, 10, 5)
    if nps_score <= 6:
        nps_comment = "Needs Improvement - Consider refining self-modification algorithms."
    elif nps_score <= 8:
        nps_comment = "Good, but can be better - Fine-tuning required."
    else:
        nps_comment = "Excellent! - The system demonstrates robust self-reward learning."
    st.write(f"**NPS Score:** {nps_score} - {nps_comment}")

# -----------------------------------------------------------------------------
# Tab 6: Extra UI Components for Extended Demonstration
# -----------------------------------------------------------------------------
with tabs[5]:
    st.header("Extra UI Components")
    with st.expander("More Details"):
        st.write("Additional explanations or interactive widgets can be added here.")
    
    col1, col2 = st.columns(2)
    with col1:
        st.write("**Column 1:** Additional metrics or charts.")
        st.line_chart(np.random.randn(20, 1))
    with col2:
        st.write("**Column 2:** Other interactive elements.")
        st.bar_chart(np.random.randn(20, 1))