File size: 3,127 Bytes
553d692
 
 
 
 
4081be9
911163c
d56f2c2
553d692
 
911163c
 
 
 
553d692
 
3d956aa
911163c
be2d971
911163c
 
 
 
 
 
 
 
 
 
 
553d692
 
911163c
553d692
be2d971
553d692
 
 
 
 
 
 
3d956aa
911163c
4081be9
 
911163c
553d692
4081be9
911163c
4081be9
911163c
4081be9
3d956aa
4081be9
3d956aa
4081be9
 
553d692
 
 
911163c
3d956aa
4081be9
553d692
 
3d956aa
553d692
 
3d956aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import streamlit as st
import pandas as pd
import os
import glob

# Cache the loading of specialties and state files for efficiency
@st.cache_resource
def load_specialties(csv_file='Provider-Specialty.csv'):
    return pd.read_csv(csv_file)

@st.cache_resource
def find_state_files():
    return [file for file in glob.glob('./*.csv') if len(os.path.basename(file).split('.')[0]) == 2]

specialties = load_specialties()

# UI for specialty selection
st.title('Provider Specialty Analyzer πŸ“Š')

st.markdown('''
## Specialty Fields Description πŸ“
- **Code**: Unique identifier for the specialty πŸ†”
- **Grouping**: General category of the specialty 🏷️
- **Classification**: Specific type of practice within the grouping 🎯
- **Specialization**: Further refinement of the classification if applicable πŸ”
- **Definition**: Brief description of the specialty πŸ“–
- **Notes**: Additional information or updates about the specialty πŸ—’οΈ
- **Display Name**: Common name of the specialty 🏷️
- **Section**: Indicates the section of healthcare it belongs to πŸ“š
''')

specialty_options = specialties['Display Name'].unique()
selected_specialty = st.selectbox('Select a Specialty 🩺', options=specialty_options)

search_keyword = st.text_input('Or search for a keyword in specialties πŸ”')
if search_keyword:
    filtered_specialties = specialties[specialties.apply(lambda row: row.astype(str).str.contains(search_keyword, case=False).any(), axis=1)]
else:
    filtered_specialties = specialties[specialties['Display Name'] == selected_specialty]

st.dataframe(filtered_specialties)

# State selection with MN as default for testing
state_files = find_state_files()
state_options = sorted([os.path.basename(file).split('.')[0] for file in state_files])
selected_state = st.selectbox('Select a State (optional) πŸ—ΊοΈ', options=state_options, index=state_options.index('MN') if 'MN' in state_options else 0)
use_specific_state = st.checkbox('Filter by selected state only? βœ…', value=True)

def process_files(specialty_codes, specific_state='MN'):
    results = []
    file_to_process = f'./{specific_state}.csv' if use_specific_state else state_files
    
    for file in [file_to_process] if use_specific_state else state_files:
        state_df = pd.read_csv(file, header=None)  # Assuming no header for simplicity
        for code in specialty_codes:
            filtered_df = state_df[state_df[47].isin(specialty_codes)]  # Match against 48th column
            if not filtered_df.empty:
                results.append((os.path.basename(file).replace('.csv', ''), filtered_df))
    
    return results

if st.button('Analyze Text Files for Selected Specialty πŸ”'):
    specialty_codes = filtered_specialties['Code'].tolist()
    state_data = process_files(specialty_codes, selected_state if use_specific_state else 'MN')
    if state_data:
        for state, df in state_data:
            st.subheader(f"Providers in {state} with Specialties related to '{search_keyword}':")
            st.dataframe(df)
    else:
        st.write("No matching records found in text files for the selected specialties.")