awacke1's picture
Update app.py
049626b
raw
history blame
5.65 kB
import streamlit as st
import openai
import os
import base64
import glob
import mistune
import pytz
import math
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
openai.api_key = os.getenv('OPENAI_KEY')
st.set_page_config(
page_title="GPT Streamlit Document Reasoner",
layout="wide")
menu = ["txt", "htm", "md", "py"]
choice = st.sidebar.selectbox("Output file type:", menu)
choicePrefix = "Output file type is "
if choice == "txt":
st.sidebar.write(choicePrefix + "Text File.")
elif choice == "htm":
st.sidebar.write(choicePrefix + "HTML5.")
elif choice == "md":
st.sidebar.write(choicePrefix + "Markdown.")
elif choice == "py":
st.sidebar.write(choicePrefix + "Python Code.")
# Create 3 columns with column 2 being twice as large
col1, col2, col3 = st.columns([1, 2, 1])
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%I%M")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:28]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def create_file(filename, prompt, response):
if filename.endswith(".txt"):
with open(filename, 'w') as file:
file.write(f"Prompt:\n{prompt}\nResponse:\n{response}")
elif filename.endswith(".htm"):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
elif filename.endswith(".md"):
with open(filename, 'w') as file:
file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}")
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def chat_with_model(prompt, document_section):
model = "gpt-3.5-turbo"
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
conversation.append({'role': 'assistant', 'content': document_section})
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response['choices'][0]['message']['content']
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def read_file_content(file):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
user_prompt = col1.text_area("Your question:", '', height=150)
uploaded_file = col1.file_uploader("Choose a file", type=["xml", "json", "html", "htm", "md", "txt"])
max_length = 4000
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
for i, section in enumerate(list(document_sections)):
if i in document_responses:
col2.text(f"Section {i+1} Response")
col2.text_area('', document_responses[i], height=200)
else:
if col3.button(f"Chat about Section {i+1}"):
response = chat_with_model(user_prompt, section)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if col3.button('πŸ’¬ Chat'):
response = chat_with_model(user_prompt, ''.join(list(document_sections)))
document_responses['aggregate'] = response
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
all_files = glob.glob("*.txt") + glob.glob("*.htm") + glob.glob("*.md")
for file in all_files:
col1, col2 = st.sidebar.columns([4,1]) # adjust the ratio as needed
with col1:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col2:
if st.button("πŸ—‘", key=file):
os.remove(file)
st.experimental_rerun()
if __name__ == "__main__":
main()