|
import streamlit as st |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
|
|
golden_ratio = (1 + np.sqrt(5)) / 2 |
|
|
|
def generate_colored_circle_template(num_circles): |
|
fig, ax = plt.subplots(figsize=(6, 6)) |
|
ax.set_xlim(0, 1) |
|
ax.set_ylim(0, 1) |
|
ax.axis('off') |
|
|
|
for _ in range(num_circles): |
|
radius = np.random.uniform(0.05, 0.15) |
|
center = (np.random.uniform(radius, 1-radius), np.random.uniform(radius, 1-radius)) |
|
color = np.random.rand(3,) |
|
circle = plt.Circle(center, radius, color=color, alpha=0.8) |
|
ax.add_artist(circle) |
|
return fig |
|
|
|
def generate_symmetrical_circle_layout(num_layers): |
|
fig, ax = plt.subplots(figsize=(6, 6)) |
|
ax.set_aspect('equal') |
|
ax.axis('off') |
|
|
|
center = (0.5, 0.5) |
|
for i in range(num_layers): |
|
radius = (i + 1) * 0.1 |
|
for j in range(6): |
|
angle = np.pi / 3 * j |
|
x = center[0] + radius * np.cos(angle) |
|
y = center[1] + radius * np.sin(angle) |
|
circle = plt.Circle((x, y), radius=0.05, color=np.random.rand(3,), fill=True) |
|
ax.add_artist(circle) |
|
return fig |
|
|
|
def generate_fibonacci_spiral_layout(num_points): |
|
fig, ax = plt.subplots(figsize=(6, 6)) |
|
ax.axis('off') |
|
radius = 0.05 |
|
for i in range(num_points): |
|
angle = i * 2 * np.pi / golden_ratio |
|
distance = np.sqrt(i) * radius |
|
x = 0.5 + distance * np.cos(angle) |
|
y = 0.5 + distance * np.sin(angle) |
|
circle = plt.Circle((x, y), radius, color=np.random.rand(3,), fill=True) |
|
ax.add_artist(circle) |
|
ax.set_aspect('equal') |
|
return fig |
|
|
|
def is_prime(n): |
|
if n <= 1: |
|
return False |
|
for i in range(2, int(n**0.5) + 1): |
|
if n % i == 0: |
|
return False |
|
return True |
|
|
|
def generate_prime_number_spiral(num_points): |
|
fig, ax = plt.subplots(figsize=(6, 6)) |
|
ax.axis('off') |
|
radius = 0.05 |
|
for i in range(1, num_points + 1): |
|
if is_prime(i): |
|
angle = i * 2 * np.pi / golden_ratio |
|
distance = np.sqrt(i) * radius |
|
x = 0.5 + distance * np.cos(angle) |
|
y = 0.5 + distance * np.sin(angle) |
|
circle = plt.Circle((x, y), radius, color=np.random.rand(3,), fill=True) |
|
ax.add_artist(circle) |
|
ax.set_aspect('equal') |
|
return fig |
|
|
|
|
|
st.title("Circle Packings Visualization") |
|
|
|
mode = st.radio( |
|
"Choose a visualization mode:", |
|
("Random Circle Packings", "Symmetrical Circle Layouts", "Fibonacci Spiral Layout", "Prime Number Spiral") |
|
) |
|
|
|
if mode == "Random Circle Packings": |
|
num_circles = st.slider("Number of Circles", 5, 50, 10) |
|
fig = generate_colored_circle_template(num_circles) |
|
elif mode == "Symmetrical Circle Layouts": |
|
num_layers = st.slider("Number of Symmetrical Layers", 1, 5, 3) |
|
fig = generate_symmetrical_circle_layout(num_layers) |
|
elif mode == "Fibonacci Spiral Layout": |
|
num_points = st.slider("Number of Points", 10, 100, 30) |
|
fig = generate_fibonacci_spiral_layout(num_points) |
|
elif mode == "Prime Number Spiral": |
|
num_points = st.slider("Number of Points", 10, 1000, 200) |
|
fig = generate_prime_number_spiral(num_points) |
|
|
|
st.pyplot(fig) |
|
|