File size: 7,178 Bytes
8ae0ff2
e09576c
57a9c16
8ae0ff2
f413eb4
f80fd5d
59d4efc
ab9256d
e09576c
cbc71ea
 
 
 
e09576c
 
cbc71ea
 
e09576c
 
ab9256d
 
 
 
628051d
 
 
57a9c16
e09576c
 
9f870a3
8ae0ff2
e09576c
 
 
 
57a9c16
e09576c
628051d
 
 
8ae0ff2
e09576c
f413eb4
 
 
b76872c
f413eb4
b76872c
 
 
 
 
f413eb4
e09576c
8ae0ff2
f413eb4
 
cbc71ea
 
 
 
 
e09576c
821ffa5
 
 
 
 
 
cbc71ea
 
e09576c
 
af56cbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc71ea
af56cbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e09576c
57a9c16
e09576c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import os
import sys
from pathlib import Path
from PIL import Image
import re
import numpy as np

# Create directories if they don't exist
if not os.path.exists('saved_prompts'):
    os.makedirs('saved_prompts')
if not os.path.exists('saved_images'):
    os.makedirs('saved_images')

# Function to generate a safe filename
def generate_safe_filename(text):
    return re.sub('[^a-zA-Z0-9]', '_', text)

# Function to load models from a text file
def load_models_from_file(filename):
    with open(filename, 'r') as f:
        return [line.strip() for line in f]

if __name__ == "__main__":
    models = load_models_from_file('models.txt')
    print(models)

current_model = models[0]
text_gen1 = gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")
models2 = [gr.Interface.load(f"models/{model}", live=True, preprocess=False) for model in models]

# Function to trigger text generation
def text_it1(inputs, text_gen1=text_gen1):
    go_t1 = text_gen1(inputs)
    return (go_t1)

# Function to set the current model
def set_model(current_model):
    current_model = models[current_model]
    return gr.update(label=(f"{current_model}"))

# Function to list saved prompts and images
def list_saved_prompts_and_images():
    saved_prompts = os.listdir('saved_prompts')
    saved_images = os.listdir('saved_images')
    html_str = "<h2>Saved Prompts and Images:</h2><ul>"
    for prompt_file in saved_prompts:
        image_file = f"{prompt_file[:-4]}.png"
        if image_file in saved_images:
            html_str += f'<li>Prompt: {prompt_file[:-4]} | <a href="saved_images/{image_file}" download>Download Image</a></li>'
    html_str += "</ul>"
    return html_str

# Function to handle image generation and saving
def send_it1(inputs, model_choice):
    proc1 = models2[model_choice]
    output1 = proc1(inputs)
    safe_filename = generate_safe_filename(inputs[0])
    image_path = f"saved_images/{safe_filename}.png"
    prompt_path = f"saved_prompts/{safe_filename}.txt"
    with open(prompt_path, 'w') as f:
        f.write(inputs[0])
    # Saving the image based on its type
    if isinstance(output1, np.ndarray):  # If it's a numpy array
        Image.fromarray(np.uint8(output1)).save(image_path)
    elif isinstance(output1, Image.Image):  # If it's already a PIL Image
        output1.save(image_path)
    else:
        print(f"Warning: Unexpected type {type(output1)} for output1.")
    return output1

# Gradio interface layout and logic
with gr.Blocks() as myface:
    gr.HTML("""<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="twitter:card" content="player"/>
    <meta name="twitter:site" content=""/>
    <meta name="twitter:player" content="https://omnibus-maximum-multiplier-places.hf.space"/>
    <meta name="twitter:player:stream" content="https://omnibus-maximum-multiplier-places.hf.space"/>
    <meta name="twitter:player:width" content="100%"/>
    <meta name="twitter:player:height" content="600"/>    
    <meta property="og:title" content="Embedded Live Viewer"/>
    <meta property="og:description" content="Tweet Genie - A Huggingface Space"/>
    <meta property="og:image" content="https://cdn.glitch.global/80dbe92e-ce75-44af-84d5-74a2e21e9e55/omnicard.png?v=1676772531627"/>
    <!--<meta http-equiv="refresh" content="0; url=https://huggingface.co/spaces/corbt/tweet-genie">-->
  </head>
</html>
""")

    with gr.Row():
        with gr.Column(scale=100):
            saved_output = gr.HTML(label="Saved Prompts and Images")

    with gr.Row():
        with gr.Tab("Title"):
                gr.HTML("""<title>Prompt to Generate Image</title><div style="text-align: center; max-width: 1500px; margin: 0 auto;">
                <h1>Enter a Prompt in Textbox then click Generate Image</h1>""")

        with gr.Tab("Tools"):
                    with gr.Tab("View"):
                      with gr.Row():
                        with gr.Column(style="width=50%, height=70%"):
                                gr.Pil(label="Crop")
                        with gr.Column(style="width=50%, height=70%"):
                                gr.Pil(label="Crop")
                            
                    with gr.Tab("Draw"):
                        with gr.Column(style="width=50%, height=70%"):
                                gr.Pil(label="Crop")
                        with gr.Column(style="width=50%, height=70%"):
                                gr.Pil(label="Draw")
                                gr.ImagePaint(label="Draw")
                                    
                    with gr.Tab("Text"):
                        with gr.Row():
                            with gr.Column(scale=50):
                                gr.Textbox(label="", lines=8, interactive=True)            
                            with gr.Column(scale=50):
                                gr.Textbox(label="", lines=8, interactive=True)

                    with gr.Tab("Color Picker"):
                        with gr.Row():
                            with gr.Column(scale=50):
                                gr.ColorPicker(label="Color", interactive=True)            
                            with gr.Column(scale=50):
                                gr.ImagePaint(label="Draw", interactive=True)      
    with gr.Row():
        with gr.Column(scale=100):
            magic1=gr.Textbox(lines=4)
            run=gr.Button("Generate Image")
            
    with gr.Row():
        with gr.Column(scale=100):
            model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index", value=current_model, interactive=True)

    with gr.Row():
        with gr.Column(style="width=800px"):
            output1=gr.Image(label=(f"{current_model}"))
            # Check the type before attempting to save the image
            if isinstance(output1, Image.Image):  # Check if it's a PIL Image object
                output1.save(image_path)
            elif isinstance(output1, np.ndarray):  # Check if it's a NumPy array
                Image.fromarray(np.array(output1, dtype=np.uint8)).save(image_path)
            else:
                print(f"Warning: Unexpected type {type(output1)} for output1.")
                            
    with gr.Row():
        with gr.Column(scale=50):
            input_text=gr.Textbox(label="Prompt Idea",lines=2)
            use_short=gr.Button("Use Short Prompt")
            see_prompts=gr.Button("Extend Idea")
    
    with gr.Row():
        with gr.Column(scale=100):
            saved_output = gr.HTML(label=list_saved_prompts_and_images(), live=True)
                    
    def short_prompt(inputs):
        return(inputs)
    
    use_short.click(short_prompt,inputs=[input_text],outputs=magic1)
    see_prompts.click(text_it1,inputs=[input_text],outputs=magic1)
    
    # Reasoning: Link functions to Gradio components 🎛️
    model_name1.change(set_model, inputs=model_name1, outputs=[output1])
    run.click(send_it1, inputs=[magic1, model_name1], outputs=[output1])


    
# Launch the Gradio interface
myface.queue(concurrency_count=200)
myface.launch(inline=True, show_api=False, max_threads=400)