awacke1's picture
Update app.py
e09576c
raw
history blame
2.7 kB
import gradio as gr
import os
import sys
from pathlib import Path
from PIL import Image
import re
import numpy as np
# Create directories if they don't exist
if not os.path.exists('saved_prompts'):
os.makedirs('saved_prompts')
if not os.path.exists('saved_images'):
os.makedirs('saved_images')
# Function to generate a safe filename
def generate_safe_filename(text):
return re.sub('[^a-zA-Z0-9]', '_', text)
# Function to load models from a text file
def load_models_from_file(filename):
with open(filename, 'r') as f:
return [line.strip() for line in f]
if __name__ == "__main__":
models = load_models_from_file('models.txt')
print(models)
current_model = models[0]
text_gen1 = gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")
models2 = [gr.Interface.load(f"models/{model}", live=True, preprocess=False) for model in models]
# Function to trigger text generation
def text_it1(inputs, text_gen1=text_gen1):
go_t1 = text_gen1(inputs)
return (go_t1)
# Function to set the current model
def set_model(current_model):
current_model = models[current_model]
return gr.update(label=(f"{current_model}"))
# Function to list saved prompts and images
def list_saved_prompts_and_images():
saved_prompts = os.listdir('saved_prompts')
saved_images = os.listdir('saved_images')
html_str = "<h2>Saved Prompts and Images:</h2><ul>"
for prompt_file in saved_prompts:
image_file = f"{prompt_file[:-4]}.png"
if image_file in saved_images:
html_str += f'<li>Prompt: {prompt_file[:-4]} | <a href="saved_images/{image_file}" download>Download Image</a></li>'
html_str += "</ul>"
return html_str
# Function to handle image generation and saving
def send_it1(inputs, model_choice):
proc1 = models2[model_choice]
output1 = proc1(inputs)
safe_filename = generate_safe_filename(inputs[0])
image_path = f"saved_images/{safe_filename}.png"
prompt_path = f"saved_prompts/{safe_filename}.txt"
with open(prompt_path, 'w') as f:
f.write(inputs[0])
# Saving the image based on its type
if isinstance(output1, np.ndarray): # If it's a numpy array
Image.fromarray(np.uint8(output1)).save(image_path)
elif isinstance(output1, Image.Image): # If it's already a PIL Image
output1.save(image_path)
else:
print(f"Warning: Unexpected type {type(output1)} for output1.")
return output1
# Gradio interface layout and logic
with gr.Blocks() as myface:
# (Omitted for brevity, similar to your original code)
# Launch the Gradio interface
myface.queue(concurrency_count=200)
myface.launch(inline=True, show_api=False, max_threads=400)