awacke1's picture
Update app.py
ab34103
raw
history blame
4.98 kB
import streamlit as st
import pandas as pd
import random
import plotly.graph_objects as go
import plotly.express as px
def generate_health_conditions():
return [
{"condition": "πŸ’” Heart disease", "emoji": "πŸ’—", "spending": {"Minnesota": 100, "Florida": 150, "California": 200, "New York": 120, "Texas": 180}, "treatment": "Regular checkups with a cardiologist", "savings": "$1000"},
{"condition": "πŸ€• Trauma-related disorders", "emoji": "πŸš‘", "spending": {"Minnesota": 90, "Florida": 110, "California": 150, "New York": 100, "Texas": 130}, "treatment": "Counseling and physical therapy", "savings": "$500"},
{"condition": "πŸ¦€ Cancer", "emoji": "πŸŽ—οΈ", "spending": {"Minnesota": 80, "Florida": 120, "California": 180, "New York": 100, "Texas": 150}, "treatment": "Early detection and treatment", "savings": "$2000"},
{"condition": "🧠 Mental disorders", "emoji": "🧘", "spending": {"Minnesota": 70, "Florida": 100, "California": 140, "New York": 90, "Texas": 120}, "treatment": "Therapy and medication", "savings": "$1500"},
{"condition": "🦴 Osteoarthritis and joint disorders", "emoji": "πŸ₯", "spending": {"Minnesota": 60, "Florida": 90, "California": 120, "New York": 80, "Texas": 100}, "treatment": "Low-impact exercise and physical therapy", "savings": "$800"},
{"condition": "πŸ’‰ Diabetes", "emoji": "🩸", "spending": {"Minnesota": 50, "Florida": 80, "California": 100, "New York": 60, "Texas": 90}, "treatment": "Regular checkups and medication", "savings": "$1200"},
{"condition": "🫁 Chronic obstructive pulmonary disease and asthma", "emoji": "πŸ«€", "spending": {"Minnesota": 40, "Florida": 70, "California": 90, "New York": 50, "Texas": 80}, "treatment": "Inhalers and breathing exercises", "savings": "$600"},
{"condition": "🩺 Hypertension", "emoji": "πŸ’‰", "spending": {"Minnesota": 30, "Florida": 60, "California": 80, "New York": 40, "Texas": 70}, "treatment": "Lifestyle changes and medication", "savings": "$900"},
{"condition": "πŸ”¬ Hyperlipidemia", "emoji": "πŸ”¬", "spending": {"Minnesota": 20, "Florida": 50, "California": 70, "New York": 30, "Texas": 60}, "treatment": "Lifestyle changes and medication", "savings": "$700"},
{"condition": "🦴 Back problems", "emoji": "🧍", "spending": {"Minnesota": 10, "Florida": 40,
def calculate_total_spending(health_conditions):
total_spending = 0
for condition in health_conditions:
for state, spending in condition["spending"].items():
total_spending += spending
return round(total_spending, 1)
def generate_sunburst_chart(health_conditions, total_spending):
fig_sunburst = go.Figure(go.Treemap(
labels=[f"{condition['emoji']} {condition['condition']} ({state})" for condition in health_conditions for state in condition['spending'].keys()],
parents=[f"{condition['condition']} ({state})" for condition in health_conditions for state in condition['spending'].keys()],
values=[spending for condition in health_conditions for spending in condition['spending'].values()],
branchvalues="total",
))
fig_sunburst.update_layout(
title=f"Top Health Conditions in Different States by Spending (Total: ${total_spending}B)",
margin=dict(l=0, r=0, t=50, b=0),
)
return fig_sunburst
def roll(state, condition):
frequencies = [random.randint(1, 10) for _ in range(1000)]
spending = condition["spending"][state]
frequencies = [round(frequency * spending / 100, 1) for frequency in frequencies]
return frequencies
def generate_bar_chart(state, condition, frequencies):
fig_bar = px.bar(
x=[f"Variant {i}" for i in range(1, 11)],
y=frequencies[:10],
labels={'x': 'Variant', 'y': 'Cost'},
title=f"Variants of {condition['condition']} ({condition['emoji']}) in {state}",
)
return fig_bar
def generate_recommendation(condition):
return f"Based on the severity of your {condition['condition']}, we recommend {condition['treatment']} for early treatment. This could save you up to {condition['savings']} in healthcare costs."
def main():
states = ["Minnesota", "Florida", "California", "New York", "Texas"]
top_n = 10
health_conditions = generate_health_conditions()
total_spending = calculate_total_spending(health_conditions)
fig_sunburst = generate_sunburst_chart(health_conditions, total_spending)
st.plotly_chart(fig_sunburst)
condition_idx = st.selectbox("Select your current health condition", range(top_n))
condition = health_conditions[condition_idx]
st.write(generate_recommendation(condition))
state = st.selectbox("Select your state", states)
frequencies = roll(state, condition)
fig_bar = generate_bar_chart(state, condition, frequencies)
st.plotly_chart(fig_bar)
if __name__ == "__main__":
main()