Spaces:
Sleeping
Sleeping
import streamlit as st | |
import openai | |
import os | |
import base64 | |
import glob | |
import json | |
import mistune | |
import pytz | |
import math | |
import requests | |
from datetime import datetime | |
from openai import ChatCompletion | |
from xml.etree import ElementTree as ET | |
from bs4 import BeautifulSoup | |
from collections import deque | |
from audio_recorder_streamlit import audio_recorder | |
openai.api_key = os.getenv('OPENAI_KEY') | |
st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide") | |
menu = ["txt", "htm", "md", "py"] | |
choice = st.sidebar.selectbox("Output File Type:", menu) | |
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) | |
uploaded_files = [] | |
def generate_filename(prompt, file_type): | |
central = pytz.timezone('US/Central') | |
safe_date_time = datetime.now(central).strftime("%m%d_%I%M") | |
safe_prompt = "".join(x for x in prompt if x.isalnum())[:45] | |
return f"{safe_date_time}_{safe_prompt}.{file_type}" | |
def chat_with_model(prompt, document_section): | |
model = model_choice | |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] | |
conversation.append({'role': 'user', 'content': prompt}) | |
conversation.append({'role': 'assistant', 'content': document_section}) | |
response = openai.ChatCompletion.create(model=model, messages=conversation) | |
return response['choices'][0]['message']['content'] | |
def transcribe_audio(openai_key, file_path, model): | |
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" | |
headers = { | |
"Authorization": f"Bearer {openai_key}", | |
} | |
with open(file_path, 'rb') as f: | |
data = {'file': f} | |
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) | |
if response.status_code == 200: | |
st.write(response.json()) | |
response2 = chat_with_model(response.json().get('text'), '') | |
st.write('Responses:') | |
st.write(response2) | |
return response.json().get('text') | |
else: | |
st.write(response.json()) | |
st.error("Error in API call.") | |
return None | |
def save_and_play_audio(audio_recorder): | |
audio_bytes = audio_recorder() | |
if audio_bytes: | |
filename = generate_filename("Recording", "wav") | |
with open(filename, 'wb') as f: | |
f.write(audio_bytes) | |
st.audio(audio_bytes, format="audio/wav") | |
uploaded_files.append(filename) # Add the new file name to the list | |
return filename | |
return None | |
# ... (All your other function definitions) | |
def main(): | |
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) | |
collength, colupload = st.columns([2,3]) # adjust the ratio as needed | |
with collength: | |
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) | |
with colupload: | |
uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "md", "txt"]) | |
document_sections = deque() | |
document_responses = {} | |
if uploaded_file is not None: | |
file_content = uploaded_file.getvalue().decode('utf-8') | |
# Handle different file types here | |
# ... | |
document_sections.append(file_content) | |
new_filename = save_and_play_audio(audio_recorder) | |
if new_filename is not None: | |
st.write(f'File {new_filename} uploaded.') | |
if st.button("Transcribe"): | |
transcription = transcribe_audio(openai.api_key, new_filename, "whisper-1") | |
st.write(transcription) | |
chat_with_model(transcription, '') # push transcript through as prompt | |
if st.button('💬 Chat'): | |
user_responses = document_responses.get(user_prompt, []) | |
if len(user_responses) > 0: | |
st.write(user_responses[-1]) | |
else: | |
if document_sections: | |
st.write('First document section:') | |
st.write(document_sections[0]) | |
document_responses[user_prompt] = [chat_with_model(user_prompt, document_sections[0])] | |
st.write(document_responses[user_prompt][-1]) | |
else: | |
document_responses[user_prompt] = [chat_with_model(user_prompt, '')] | |
st.write(document_responses[user_prompt][-1]) | |
if uploaded_files: | |
st.write(f'Last uploaded file: {uploaded_files[-1]}') | |
for filename in uploaded_files: | |
if st.button(f"Transcribe and Chat for {filename}"): | |
transcription, response = transcribe_and_chat(openai.api_key, filename, "whisper-1") | |
if transcription is not None and response is not None: | |
filename = generate_filename(transcription, choice) | |
create_file(filename, transcription, response) | |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() | |