File size: 1,309 Bytes
c6b92c7
072885d
 
 
 
 
 
5554539
 
 
 
 
 
b827309
 
5554539
86c4485
5554539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c4485
5554539
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import streamlit as st
import pandas as pd
import bertopic
import plotly.express as px

st.set_page_config(page_title="Topic Modeling with Bertopic")

from datasets import load_dataset

st.markdown("""
https://github.com/pinecone-io/examples/tree/master/learn/algos-and-libraries/bertopic
""")

# data = load_dataset('jamescalam/python-reddit')
data = load_dataset("awacke1/LOINC-Panels-and-Forms")
data = data.filter(
    lambda x: True if len(x[0]) > 30 else 0
)
from bertopic import BERTopic
from sklearn.feature_extraction.text import CountVectorizer

# we add this to remove stopwords
vectorizer_model = CountVectorizer(ngram_range=(1, 2), stop_words="english")

model = BERTopic(
    vectorizer_model=vectorizer_model,
    language='english', calculate_probabilities=True,
    verbose=True
)
topics, probs = model.fit_transform(text)
freq = model.get_topic_info()
freq.head(10)


from sentence_transformers import SentenceTransformer

model = SentenceTransformer('all-MiniLM-L6-v2')
model

import numpy as np
from tqdm.auto import tqdm

batch_size = 16

embeds = np.zeros((n, model.get_sentence_embedding_dimension()))

for i in tqdm(range(0, n, batch_size)):
    i_end = min(i+batch_size, n)
    batch = data[0][i:i_end]
    batch_embed = model.encode(batch)
    embeds[i:i_end,:] = batch_embed