VizLib-Mahotas / app.py
awacke1's picture
Update app.py
d2a3a56
import streamlit as st
import mahotas as mh
import pandas as pd
import plotly.express as px
import urllib.request
from skimage import io
# Define a list of medical conditions
conditions = [
{"name": "Depression", "test_for": "Patient Health Questionnaire-9 (PHQ-9)"},
{"name": "Anxiety", "test_for": "Generalized Anxiety Disorder-7 (GAD-7)"},
{"name": "Diabetes", "test_for": "Hemoglobin A1C test"},
{"name": "Hypertension", "test_for": "Blood pressure measurement"},
{"name": "Asthma", "test_for": "Pulmonary function test"},
{"name": "Cancer", "test_for": "Biopsy or imaging tests (e.g., CT scan, MRI)"},
{"name": "Arthritis", "test_for": "X-ray, MRI, or ultrasound"},
{"name": "Heart disease", "test_for": "Electrocardiogram (ECG)"},
{"name": "Obesity", "test_for": "Body mass index (BMI)"},
{"name": "Substance use disorder", "test_for": "Substance Abuse Subtle Screening Inventory (SASSI)"}
]
# Define a function to process images using Mahotas
def process_image(image):
# Convert the image to grayscale
grayscale_image = mh.colors.rgb2gray(image)
# Apply a Gaussian filter to the image to reduce noise
filtered_image = mh.gaussian_filter(grayscale_image, 4)
# Threshold the image to create a binary image
binary_image = filtered_image > mh.otsu(filtered_image)
# Compute the connected components in the binary image
labels, num_labels = mh.label(binary_image)
# Compute the size of each connected component
sizes = mh.labeled.labeled_size(labels)
# Sort the sizes in descending order
sorted_sizes = sorted(sizes, reverse=True)
# Return the top 10 sizes
return sorted_sizes[:10]
# Define the Streamlit app
def app():
# Add a title to the app
st.title("Mahotas Demo")
# Add a sidebar to the app
st.sidebar.title("Medical Conditions")
selected_condition = st.sidebar.selectbox("Select a condition", [c["name"] for c in conditions])
# Get the selected condition
condition = next(c for c in conditions if c["name"] == selected_condition)
# Display the selected condition
st.header(condition["name"])
st.write("Test for:", condition["test_for"])
# Load an example medical image
if selected_condition == "Depression":
image_url = "https://i.imgur.com/kPQoD8C.jpg"
elif selected_condition == "Anxiety":
image_url = "https://i.imgur.com/ZWyKjJN.jpg"
elif selected_condition == "Diabetes":
image_url = "https://i.imgur.com/1gOEMO5.jpg"
elif selected_condition == "Hypertension":
image_url = "https://i.imgur.com/BoSUwio.jpg"
elif selected_condition == "Asthma":
image_url = "https://i.imgur.com/BLKjzJF.jpg"
elif selected_condition == "Cancer":
image_url = "https://i.imgur.com/nq3vV8.jpg"
elif selected_condition == "Arthritis":
image_url = "https://i.imgur.com/ffzd6Fo.jpg"
elif selected_condition == "Heart disease":
image_url = "https://i.imgur.com/1I7axhd.jpg"
elif selected_condition == "Obesity":
image_url = "https://i.imgur.com/nZ1EjJr.jpg"
else:
image_url = "https://i.imgur.com/RUBZOWF.jpg"
image = io.imread(image_url)
# Process the image using Mahotas
sizes = process_image(image)
# Display the top 10 connected component sizes
df = pd.DataFrame({"Size": sizes})
st.write(df)
# Create a sunburst chart using Plotly
fig = px.sunburst(
df,
path=["Size"],
values="Size",
color="Size",
color_continuous_scale="blues"
)
st.plotly_chart(fig)
st.markdown("""
# Alternate Image Links Per Condition:
Depression: https://www.pexels.com/photo/woman-sitting-on-grass-field-while-holding-her-head-7127866/
Anxiety: https://www.pexels.com/photo/woman-sitting-on-rock-and-looking-at-the-ocean-7119798/
Diabetes: https://www.pexels.com/photo/man-taking-blood-sugar-test-4050305/
Hypertension: https://www.pexels.com/photo/woman-measuring-blood-pressure-with-sphygmomanometer-5691686/
Asthma: https://www.pexels.com/photo/woman-having-asthma-attack-in-park-7127511/
Cancer: https://www.pexels.com/photo/close-up-of-pink-ribbon-on-cancer-awareness-banner-4219366/
Arthritis: https://www.pexels.com/photo/man-with-back-pain-lying-on-bed-4050323/
Heart disease: https://www.pexels.com/photo/woman-touching-chest-during-chest-pain-7127487/
Obesity: https://www.pexels.com/photo/woman-in-black-pants-lying-on-bed-7127516/
""")
app()