|
import streamlit as st |
|
import openai |
|
import os |
|
import base64 |
|
import glob |
|
import json |
|
import mistune |
|
import pytz |
|
import math |
|
import requests |
|
import pandas as pd |
|
|
|
from datetime import datetime |
|
from openai import ChatCompletion |
|
from xml.etree import ElementTree as ET |
|
from bs4 import BeautifulSoup |
|
from collections import deque |
|
from audio_recorder_streamlit import audio_recorder |
|
|
|
openai.api_key = os.getenv('OPENAI_KEY') |
|
st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide") |
|
|
|
menu = ["txt", "htm", "md", "py", "csv", "xlsx"] |
|
choice = st.sidebar.selectbox("Output File Type:", menu) |
|
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) |
|
|
|
def generate_filename(prompt, file_type): |
|
central = pytz.timezone('US/Central') |
|
safe_date_time = datetime.now(central).strftime("%m%d_%I%M") |
|
safe_prompt = "".join(x for x in prompt if x.isalnum())[:45] |
|
return f"{safe_date_time}_{safe_prompt}.{file_type}" |
|
|
|
TEMPERATURE = st.sidebar.slider("Adjust Creativity:", min_value=0.1, max_value=1.0, value=0.5, step=0.1) |
|
def chat_with_model(prompt, document_section): |
|
model = model_choice |
|
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] |
|
conversation.append({'role': 'user', 'content': prompt}) |
|
conversation.append({'role': 'assistant', 'content': document_section}) |
|
response = openai.ChatCompletion.create(model=model, messages=conversation, temperature=TEMPERATURE) |
|
return response['choices'][0]['message']['content'] |
|
|
|
def create_file(filename, prompt, response): |
|
if filename.endswith(".txt"): |
|
with open(filename, 'w') as file: |
|
file.write(f"Prompt:\n{prompt}\nResponse:\n{response}") |
|
elif filename.endswith(".htm"): |
|
with open(filename, 'w') as file: |
|
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>") |
|
elif filename.endswith(".md"): |
|
with open(filename, 'w') as file: |
|
file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}") |
|
elif filename.endswith(".csv"): |
|
response_df = pd.DataFrame({"Prompt": [prompt], "Response": [response]}) |
|
response_df.to_csv(filename, index=False) |
|
elif filename.endswith(".xlsx"): |
|
response_df = pd.DataFrame({"Prompt": [prompt], "Response": [response]}) |
|
response_df.to_excel(filename, index=False) |
|
|
|
|
|
def transcribe_audio(openai_key, file_path, model): |
|
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" |
|
headers = { |
|
"Authorization": f"Bearer {openai_key}", |
|
} |
|
with open(file_path, 'rb') as f: |
|
data = {'file': f} |
|
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) |
|
if response.status_code == 200: |
|
st.write('Reasoning with your transcription..') |
|
transcript=response.json().get('text') |
|
st.write(transcript) |
|
gptResponse = chat_with_model(transcript, '') |
|
filename = generate_filename(transcript, choice) |
|
create_file(filename, transcript, gptResponse) |
|
return gptResponse |
|
else: |
|
st.write(response.json()) |
|
st.error("Error in API call.") |
|
return None |
|
|
|
|
|
def save_and_play_audio(audio_recorder): |
|
audio_bytes = audio_recorder() |
|
if audio_bytes: |
|
filename = generate_filename("Recording", "wav") |
|
with open(filename, 'wb') as f: |
|
f.write(audio_bytes) |
|
st.audio(audio_bytes, format="audio/wav") |
|
return filename |
|
USEAUDIO=False |
|
if USEAUDIO: |
|
if st.sidebar.checkbox('Use Audio Input'): |
|
filename = save_and_play_audio(audio_recorder) |
|
if filename is not None: |
|
|
|
transcription = transcribe_audio(openai.api_key, filename, "whisper-1") |
|
st.markdown('### Transcription:') |
|
st.write(transcription) |
|
|
|
|
|
def truncate_document(document, length): |
|
return document[:length] |
|
|
|
def divide_document(document, max_length): |
|
return [document[i:i+max_length] for i in range(0, len(document), max_length)] |
|
|
|
def get_table_download_link(file_path): |
|
with open(file_path, 'r') as file: |
|
data = file.read() |
|
b64 = base64.b64encode(data.encode()).decode() |
|
file_name = os.path.basename(file_path) |
|
ext = os.path.splitext(file_name)[1] |
|
if ext == '.txt': |
|
mime_type = 'text/plain' |
|
elif ext == '.wav': |
|
mime_type = 'audio/x-wav' |
|
elif ext == '.htm': |
|
mime_type = 'text/html' |
|
elif ext == '.md': |
|
mime_type = 'text/markdown' |
|
else: |
|
mime_type = 'application/octet-stream' |
|
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>' |
|
return href |
|
|
|
def CompressXML(xml_text): |
|
root = ET.fromstring(xml_text) |
|
for elem in list(root.iter()): |
|
if isinstance(elem.tag, str) and 'Comment' in elem.tag: |
|
elem.parent.remove(elem) |
|
return ET.tostring(root, encoding='unicode', method="xml") |
|
|
|
def read_file_content(file,max_length): |
|
if file.type == "application/json": |
|
content = json.load(file) |
|
return str(content) |
|
elif file.type == "text/html" or file.type == "text/htm": |
|
content = BeautifulSoup(file, "html.parser") |
|
return content.text |
|
elif file.type == "application/xml" or file.type == "text/xml": |
|
tree = ET.parse(file) |
|
root = tree.getroot() |
|
xml = CompressXML(ET.tostring(root, encoding='unicode')) |
|
return xml |
|
elif file.type == "text/markdown" or file.type == "text/md": |
|
md = mistune.create_markdown() |
|
content = md(file.read().decode()) |
|
return content |
|
elif file.type == "text/plain": |
|
return file.getvalue().decode() |
|
elif file.type == "text/csv": |
|
df = pd.read_csv(file) |
|
return df.to_string(index=False) |
|
elif file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": |
|
df = pd.read_excel(file) |
|
return df.to_string(index=False) |
|
else: |
|
return "" |
|
|
|
def main(): |
|
|
|
max_length = st.sidebar.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) |
|
|
|
colprompt, colupload = st.columns([5,2]) |
|
with colprompt: |
|
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=150) |
|
with colupload: |
|
uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "txt"]) |
|
|
|
document_sections = deque() |
|
document_responses = {} |
|
|
|
if uploaded_file is not None: |
|
file_content = read_file_content(uploaded_file, max_length) |
|
document_sections.extend(divide_document(file_content, max_length)) |
|
|
|
if len(document_sections) > 0: |
|
|
|
if st.button("ποΈ View Upload"): |
|
st.markdown("**Sections of the uploaded file:**") |
|
for i, section in enumerate(list(document_sections)): |
|
st.markdown(f"**Section {i+1}**\n{section}") |
|
|
|
st.markdown("**Chat with the model:**") |
|
for i, section in enumerate(list(document_sections)): |
|
if i in document_responses: |
|
st.markdown(f"**Section {i+1}**\n{document_responses[i]}") |
|
else: |
|
if st.button(f"Chat about Section {i+1}"): |
|
st.write('Reasoning with your inputs...') |
|
response = chat_with_model(user_prompt, section) |
|
st.write('Response:') |
|
st.write(response) |
|
document_responses[i] = response |
|
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) |
|
create_file(filename, user_prompt, response) |
|
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) |
|
|
|
if st.button('π¬ Chat'): |
|
st.write('Reasoning with your inputs...') |
|
response = chat_with_model(user_prompt, ''.join(list(document_sections))) |
|
st.write('Response:') |
|
st.write(response) |
|
|
|
filename = generate_filename(user_prompt, choice) |
|
create_file(filename, user_prompt, response) |
|
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) |
|
|
|
all_files = glob.glob("*.*") |
|
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] |
|
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) |
|
|
|
for file in all_files: |
|
col1, col3 = st.sidebar.columns([5,1]) |
|
with col1: |
|
try: |
|
st.markdown(get_table_download_link(file), unsafe_allow_html=True) |
|
except Exception as e: |
|
st.error(f"Error occurred while processing file {file}: {str(e)}") |
|
with col3: |
|
if st.button("π", key="delete_"+file): |
|
os.remove(file) |
|
st.experimental_rerun() |
|
|
|
if __name__ == "__main__": |
|
main() |