Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, File, UploadFile, HTTPException | |
from PIL import Image | |
import numpy as np | |
from io import BytesIO | |
import math | |
import pickle | |
import os | |
app = FastAPI(title="Fingerprint detection API") | |
som_model = None | |
classification_matrix = None | |
def sobel(I): | |
m, n = I.shape | |
Gx = np.zeros([m-2, n-2], np.float32) | |
Gy = np.zeros([m-2, n-2], np.float32) | |
gx = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]] | |
gy = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]] | |
for j in range(1, m-2): | |
for i in range(1, n-2): | |
Gx[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gx)) | |
Gy[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gy)) | |
return Gx, Gy | |
def medfilt2(G, d=3): | |
m, n = G.shape | |
temp = np.zeros([m+2*(d//2), n+2*(d//2)], np.float32) | |
salida = np.zeros([m, n], np.float32) | |
temp[1:m+1, 1:n+1] = G | |
for i in range(1, m): | |
for j in range(1, n): | |
A = np.asarray(temp[i-1:i+2, j-1:j+2]).reshape(-1) | |
salida[i-1, j-1] = np.sort(A)[d+1] | |
return salida | |
def orientacion(patron, w): | |
Gx, Gy = sobel(patron) | |
Gx = medfilt2(Gx) | |
Gy = medfilt2(Gy) | |
m, n = Gx.shape | |
mOrientaciones = np.zeros([m//w, n//w], np.float32) | |
for i in range(m//w): | |
for j in range(n//w): | |
YY = sum(sum(2*Gx[i*w:(i+1)*w, j*w:(j+1)*w]*Gy[i*w:(i+1)*w, j*w:(j+1)*w])) | |
XX = sum(sum(Gx[i*w:(i+1)*w, j*w:(j+1)*w]**2-Gy[i*w:(i+1)*w, j*w:(j+1)*w]**2)) | |
mOrientaciones[i, j] = (0.5*math.atan2(YY, XX) + math.pi/2.0)*(180.0/math.pi) | |
return mOrientaciones | |
def representativo(image_array): | |
if isinstance(image_array, np.ndarray): | |
if len(image_array.shape) == 3: | |
image_array = np.mean(image_array, axis=2) | |
im = Image.fromarray(image_array.astype(np.uint8)) | |
else: | |
im = image_array | |
im = im.resize((256, 256)) | |
m, n = im.size | |
imarray = np.array(im, np.float32) | |
patron = imarray[1:m-1, 1:n-1] | |
EE = orientacion(patron, 14) | |
return np.asarray(EE).reshape(-1) | |
def is_valid_fingerprint_features(features): | |
if features is None or len(features) != 324: | |
return False | |
if np.any(np.isnan(features)) or np.any(np.isinf(features)): | |
return False | |
if np.min(features) < 0 or np.max(features) > 180: | |
return False | |
orientation_variance = np.var(features) | |
if orientation_variance < 100: | |
return False | |
bins = np.histogram(features, bins=18, range=(0, 180))[0] | |
non_empty_bins = np.sum(bins > 0) | |
if non_empty_bins < 6: | |
return False | |
return True | |
def load_trained_model(): | |
global som_model, classification_matrix | |
try: | |
if os.path.exists('somhuella.pkl'): | |
with open('somhuella.pkl', 'rb') as f: | |
som_model = pickle.load(f) | |
print("OK model") | |
else: | |
print("cargar somhuella.pkl") | |
return False | |
if os.path.exists('matrizMM.txt'): | |
classification_matrix = np.loadtxt('matrizMM.txt') | |
print("OK matrix") | |
else: | |
print("load matrix") | |
return False | |
return True | |
except Exception as e: | |
print(f"error {e}") | |
return False | |
def detect_and_classify_fingerprint(features): | |
global som_model, classification_matrix | |
if not is_valid_fingerprint_features(features): | |
return False, "no fingerprint patterns" | |
if som_model is None or classification_matrix is None: | |
return True, "Fingerprint pattern detected" | |
try: | |
winner = som_model.winner(features) | |
classification_value = classification_matrix[winner] | |
if classification_value == -1: | |
return False, "no pattern" | |
class_names = { | |
0: "LEFT_LOOP", | |
1: "RIGHT_LOOP", | |
2: "WHORL", | |
3: "ARCO" | |
} | |
class_name = class_names.get(int(classification_value), "UNKNOWN") | |
return True, f"{class_name} fingerprint detected (class {int(classification_value)})" | |
except Exception as e: | |
print(f"Error in SOM class: {e}") | |
return True, "Fingerprint pattern detected (classification error)" | |
load_trained_model() | |
async def detect_fingerprint(file: UploadFile = File(...)): | |
try: | |
contents = await file.read() | |
image = Image.open(BytesIO(contents)) | |
image_array = np.array(image) | |
features = representativo(image_array) | |
is_fingerprint, details = detect_and_classify_fingerprint(features) | |
return { | |
"fingerprint_detected": is_fingerprint, | |
"details": details | |
} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"error processing image: {str(e)}") | |