fingerprintsom / app.py
axvg's picture
init
373a8cf verified
from fastapi import FastAPI, File, UploadFile, HTTPException
from PIL import Image
import numpy as np
from io import BytesIO
import math
import pickle
import os
app = FastAPI(title="Fingerprint detection API")
som_model = None
classification_matrix = None
def sobel(I):
m, n = I.shape
Gx = np.zeros([m-2, n-2], np.float32)
Gy = np.zeros([m-2, n-2], np.float32)
gx = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]
gy = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]
for j in range(1, m-2):
for i in range(1, n-2):
Gx[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gx))
Gy[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gy))
return Gx, Gy
def medfilt2(G, d=3):
m, n = G.shape
temp = np.zeros([m+2*(d//2), n+2*(d//2)], np.float32)
salida = np.zeros([m, n], np.float32)
temp[1:m+1, 1:n+1] = G
for i in range(1, m):
for j in range(1, n):
A = np.asarray(temp[i-1:i+2, j-1:j+2]).reshape(-1)
salida[i-1, j-1] = np.sort(A)[d+1]
return salida
def orientacion(patron, w):
Gx, Gy = sobel(patron)
Gx = medfilt2(Gx)
Gy = medfilt2(Gy)
m, n = Gx.shape
mOrientaciones = np.zeros([m//w, n//w], np.float32)
for i in range(m//w):
for j in range(n//w):
YY = sum(sum(2*Gx[i*w:(i+1)*w, j*w:(j+1)*w]*Gy[i*w:(i+1)*w, j*w:(j+1)*w]))
XX = sum(sum(Gx[i*w:(i+1)*w, j*w:(j+1)*w]**2-Gy[i*w:(i+1)*w, j*w:(j+1)*w]**2))
mOrientaciones[i, j] = (0.5*math.atan2(YY, XX) + math.pi/2.0)*(180.0/math.pi)
return mOrientaciones
def representativo(image_array):
if isinstance(image_array, np.ndarray):
if len(image_array.shape) == 3:
image_array = np.mean(image_array, axis=2)
im = Image.fromarray(image_array.astype(np.uint8))
else:
im = image_array
im = im.resize((256, 256))
m, n = im.size
imarray = np.array(im, np.float32)
patron = imarray[1:m-1, 1:n-1]
EE = orientacion(patron, 14)
return np.asarray(EE).reshape(-1)
def is_valid_fingerprint_features(features):
if features is None or len(features) != 324:
return False
if np.any(np.isnan(features)) or np.any(np.isinf(features)):
return False
if np.min(features) < 0 or np.max(features) > 180:
return False
orientation_variance = np.var(features)
if orientation_variance < 100:
return False
bins = np.histogram(features, bins=18, range=(0, 180))[0]
non_empty_bins = np.sum(bins > 0)
if non_empty_bins < 6:
return False
return True
def load_trained_model():
global som_model, classification_matrix
try:
if os.path.exists('somhuella.pkl'):
with open('somhuella.pkl', 'rb') as f:
som_model = pickle.load(f)
print("OK model")
else:
print("cargar somhuella.pkl")
return False
if os.path.exists('matrizMM.txt'):
classification_matrix = np.loadtxt('matrizMM.txt')
print("OK matrix")
else:
print("load matrix")
return False
return True
except Exception as e:
print(f"error {e}")
return False
def detect_and_classify_fingerprint(features):
global som_model, classification_matrix
if not is_valid_fingerprint_features(features):
return False, "no fingerprint patterns"
if som_model is None or classification_matrix is None:
return True, "Fingerprint pattern detected"
try:
winner = som_model.winner(features)
classification_value = classification_matrix[winner]
if classification_value == -1:
return False, "no pattern"
class_names = {
0: "LEFT_LOOP",
1: "RIGHT_LOOP",
2: "WHORL",
3: "ARCO"
}
class_name = class_names.get(int(classification_value), "UNKNOWN")
return True, f"{class_name} fingerprint detected (class {int(classification_value)})"
except Exception as e:
print(f"Error in SOM class: {e}")
return True, "Fingerprint pattern detected (classification error)"
load_trained_model()
@app.post("/detect_fingerprint/")
async def detect_fingerprint(file: UploadFile = File(...)):
try:
contents = await file.read()
image = Image.open(BytesIO(contents))
image_array = np.array(image)
features = representativo(image_array)
is_fingerprint, details = detect_and_classify_fingerprint(features)
return {
"fingerprint_detected": is_fingerprint,
"details": details
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"error processing image: {str(e)}")